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Abstract— Robot person following (RPF) is a crucial capabil-
ity in human-robot interaction (HRI) applications, allowing a
robot to persistently follow a designated person. In practical
RPF scenarios, the person can often be occluded by other
objects or people. Consequently, it is necessary to re-identify the
person when he/she reappears within the robot’s field of view.
Previous person re-identification (ReID) approaches to person
following rely on a fixed feature extractor. Such an approach
often fails to generalize to different viewpoints and lighting
conditions in practical RPF environments. In other words, it
suffers from the so-called domain shift problem where it cannot
re-identify the person when his re-appearance is out of the
domain modeled by the fixed feature extractor. To mitigate this
problem, we propose a ReID framework for RPF where we use
a feature extractor that is optimized online with both short-
term and long-term experiences (i.e., recently and previously
observed samples during RPF) using the online continual
learning (OCL) framework. The long-term experiences are
maintained by a memory manager to enable OCL to update
the feature extractor. Our experiments demonstrate that even
in the presence of severe appearance changes and distractions
from visually similar people, the proposed method can still re-
identify the person more accurately than the state-of-the-art
methods.

I. INTRODUCTION

Robot person following (RPF) [1] serves as an essential
function in many HRI applications, enabling a robot to follow
a specified person autonomously. However, the person being
followed may become occluded in various situations, such
as when other objects or people obstruct the view of the
robot in the working environment. Therefore, it is crucial to
re-identify the person when he re-appears in the view.

Existing RPF systems can be achieved through two steps:
identify and follow. In the identify step, the system performs
tracking and possibly ReID to locate the target person,
while the follow step involves planning and executing the
control of the robot to maintain the desired relative position
with the target person. In this paper, we focus on the
ReID aspect, specifically re-identifying the target person
after occlusion. Existing ReID methods for RPF describe
a person’s appearance either with hand-crafted features [2],
[3] or with learned features [4]. However, these methods
may experience poor generalization when the features are
not sufficiently discriminative for re-identifying the person.
Some methods [5], [6] update the tracker online with newly
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Our code, video and appendix are available at https://sites.google.com/
view/oclrpf.

Fig. 1. Robot person following with online continual learning. To this end,
long-term and short-term experiences are utilized to optimize the feature
extractor online to represent the discriminative appearance of the target
person.

acquired observations of the target person to distinguish the
person from the background and other distracting individuals.
Such solutions usually do not consider the appearance of a
person explicitly, leading to suboptimal ReID performance.
To improve the generalization ability, one possible solution
is to train the feature extractor online with the most recently
observed samples, i.e., short-term experiences. However, we
found this would result in limited discriminative ability when
the re-appearance of the target person is out of the learned
domain represented by the short-term experiences. All these
problems are commonly known as domain drift [7].

To solve the above problems, we propose to utilize long-
term experiences in addition to short-term ones to optimize
the feature extractor online for representing the target per-
son’s discriminative appearance. Specifically, we approach
the person ReID in RPF as a problem of online continual
learning (OCL) [7], which aims to learn the newest knowl-
edge without forgetting long-term experiences using a size-
limited long-term memory. This idea has shown promising
results in existing works on dense mapping [8] and place
recognition [9]. For example, IMap [8] incrementally learns
a NeRF-based dense map by replaying images and poses
from a sparse keyframe set, where camera poses are esti-
mated through the tracking process. Similarly, BioSLAM [9]
constructs a discriminative long-term memory to replay point
clouds and positions for learning a life-long place recognition
network, where positions are obtained via LiDAR odometry.

To develop a ReID framework for RPF that capitalizes on
long-term experiences, we established a long-term memory
module designed to archive key historical samples, chosen
via a loss-guided keyframe selection method. By integrating
these long-term samples with short-term data, we optimize
the feature extractor online to maintain a comprehensive
understanding of the target person, bridging past and present
knowledge. Additionally, we apply these optimized features
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to train a ridge-regression-based classifier for accurate target
recognition. Lastly, a ReID lifecycle management is imple-
mented to form a complete ReID solution. In our experi-
ments, the RPF system with our ReID method can reliably re-
identify and follow the target person even in situations with
visually similar distracting people and different appearances
after occlusion.

II. RELATED WORK

A. Person ReID in Robot Person Following

Person ReID is crucial for RPF, which helps re-identify
the target person after occlusion. Existing ReID methods in
RPF usually describe the appearance of the target person
with hand-crafted features [2], [3] or learned features [4]. Ex-
amples of hand-crafted features include geometric attributes
[2], and characteristics like height, gait and clothing color
[3]. Alternatively, ReID can rely on features learned from a
ReID dataset. For example, [4] trains a convolutional neu-
ral network (CNN) using a custom-built, small-scale ReID
dataset and then extracts features from the low-level response
maps of the CNN. Often, these features are further utilized
to construct a target classifier with short-term experiences.

The above methods, however, often fail to re-identify
the person in complicated RPF situations because features
from a fixed feature extractor have a limited capability to
generalize to different viewpoints and lighting conditions in
practical RPF environments. To mitigate this generalization
problem, we optimize the feature extractor online with the
short-term experiences used to construct the target classifier
in the above methods. However, optimized features are still
not discriminative enough to recognize the target person,
especially when the re-appearance of the target person is out
of the learned domain. These are commonly referred to as
domain drift [7]. To mitigate these problems, we propose
to utilize OCL techniques to collect valuable long-term
experiences. These experiences, in addition to short-term
ones, are used to optimize ReID features, thereby improving
the ReID performance of the RPF system.

B. Person ReID in Computer Vision

Person ReID has been a prominent research area in
computer vision, primarily identifying individuals in video
surveillance systems [10]. Various methods have been pro-
posed to solve the ReID problem. For instance, [11] in-
troduces a hand-crafted feature that combines eight color
channels (RGB, HSV, and YCbCr) and 19 texture channels
to achieve viewpoint invariance. Another approach [12]
involves using attribute-based features to achieve competi-
tive ReID performance. However, in recent years, with the
advancement of deep learning techniques, learned features
[13] have become dominant in ReID research due to their
end-to-end nature and excellent generalization. Notably, [14]
proposes a CNN-based ReID method that effectively models
complex photometric and geometric transformations. How-
ever, ReID with a global CNN feature can introduce distrac-
tive information in case of occlusion, posing a challenge in
real-world scenarios.

To address the issue of occlusion, researchers have intro-
duced ReID methods [15], [16] that leverage pre-defined or
learned part masks to match features defined with respect
to parts of a target person. Considering that an occluded
human body is frequently encountered in RPF scenarios,
one can use part-guided ReID features to describe a person’s
appearance. Still, as mentioned before, these features from
a fixed feature extractor have a limited generalization ability
in practical RPF environments with different viewpoints and
lighting conditions. To solve the generalization problem,
a similar approach to ours is the memory-based ReID
[17]–[19], which tackles unsupervised domain adaptation by
transferring knowledge from a labeled source domain to an
unlabeled target domain. However, deploying these methods
poses significant challenges in the context of RPF due to
the demands for extensive iterative training and substantial
memory storage. In contrast, our approach enables the op-
timization of the feature extractor and the re-identification
of the target person in real time, even on onboard devices.
In this paper, we are the first to explore pre-trained deep
features from the computer vision community for forming a
complete RPF-task-driven target-ReID framework.

C. Online Continual Learning

OCL addresses the challenge of learning from a non-
independent and identically distributed (Non-IID) stream of
data in an online manner, with the objective of preserving and
extending historical knowledge [7]. The Non-IID data setting
aligns with the observation scenario of our RPF system, in
which the appearance of an observed individual significantly
varies due to complex backgrounds and the motion of the
robot and target.

Recent works in OCL can be categorized into three main
families: regularization-based, parameter-isolation-based and
memory-replay-based methods. Regularization-based meth-
ods [20], [21] preserve knowledge by adding history-related
constraints to the loss function during current task training,
thereby balancing the loss gradient direction for old and
new knowledge. However, these methods face challenges
in finding the desired global optima, making it difficult to
strike a balance between both types of knowledge. Parameter-
isolation-based methods [22], [23] retain old knowledge by
freezing the related parts of the model and only allowing
the remaining parts to learn new knowledge. However, these
methods are limited by the initial model capacity and re-
quire significant training time to achieve good performance.
Memory-replay-based methods [24]–[26] utilize memory
replays to learn old knowledge incrementally. Examples
include Reservoir [26], which randomly forgets samples
based on a distribution related to observation times, MIR
[24], which randomly updates the memory and retrieves “the
hardest” samples for model updating, and ASER [25], which
utilizes an Adversarial Shapley value scoring method for
memory retrieval to preserve latent decision boundaries for
previously observed samples.

Recently, the benefits of memory-replay-based OCL have
been demonstrated in several works [8], [9] to enhance the
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Fig. 2. The top part is the pipeline of our RPF system and the bottom part is the proposed person ReID framework. We obtain image patches {M}i
of the tracked people using the current image I and their bounding boxes {B}i. When the target person is consistently tracked, his label y represents
positives and other people are negatives. Afterward, we add {M,y}i to the memory manager for memorization. Additionally, these patches are fed into
the feature extractor to extract ReID features. These features are utilized by the target classifier to estimate the target confidence. If the target confidence is
greater than a threshold, the corresponding position p is designated as the target position. In addition to the inference above process, the memory manager
simultaneously replays long-term and short-term experiences to train the feature extractor. Meanwhile, the target classifier is trained with short-term
experiences. If the target person is not found among the tracked individuals, the training process pauses, and all observations {M,y}i become candidates
for re-identification. The above training and inference processes are managed by the ReID lifecycle.

perception ability of robot systems. Therefore, we adopt a
memory-replay-based algorithm in the implementation of our
RPF system, although our solution is not limited to any
particular OCL algorithm. To the best of our knowledge,
we are the first to integrate the OCL concept into an RPF
system to optimize the feature extractor incrementally from
both long-term and short-term experiences.

III. METHOD

A. Problem Statement and Overview

Our RPF system is an extension of our previous work
[27], represented by the top half of Fig. 2. Our previous RPF
system allows for accurate tracking of individuals, even in
scenarios with partial occlusion. It first tracks multiple people
and then identifies the target person to follow by selecting the
corresponding identity (ID). However, when the target person
undergoes occlusion and disappears from the camera view,
his ID may be removed because no observation is associated
with the ID. Therefore, re-identifying the target person after
occlusion, either momentarily or over a long time, becomes
crucial. To solve this problem in our current work, we
introduce a person ReID process, which is performed by the
module in the lower half of Fig. 2. In this ReID module, the
feature extractor and the target classifier are optimized when
the target person can be correctly identified from tracked
people. Later, if and when a long-time occlusion occurs, the
optimized models are utilized to re-identify the target person
among all the tracked people.

In each ReID period, we capture image patches {M}i
of the tracked individuals using the current image I and
their corresponding bounding boxes {B}i. When the target
person is consistently tracked, his label y represents a
positive sample, while labels for other people are negatives.
Subsequently, these patches {M}i are fed into the feature
extractor for extracting ReID features (Sec. III-B) and these
features are further utilized by the target classifier to estimate
the target confidence (Sec. III-C). If the target confidence
is greater than a threshold, the corresponding position p is
designated as the target position.

In addition to the inference process mentioned above, we
add {M,y}i to the memory manager (Sec. III-D) for per-
forming memory-replay-based OCL. Specifically, the feature
extractor is incrementally optimized with both long-term
and short-term experiences (mlt ∪mst) in an OCL manner
through Eq. 1. Besides, the target classifier is trained with
short-term experiences mst through Eq. 4. If the target person
is not found among the tracked people, the training process
pauses, and all observations {M,y}i become candidates for
re-identification. The above training and inference processes
are managed by the ReID lifecycle detailed in Algorithm I in
APPENDIX-D. Except for the memory-replay-based OCL,
we name this ReID framework as RPF-ReID, which is a
complete RPF-task-driven target-ReID module based on pre-
trained deep features from the computer vision community.

B. Feature Extractor

We use a feature-based neural network to extract a per-
son’s appearance features. Given an image I and a person’s
bounding box B, we extract his image patch, denoted as
M. Subsequently, we fine-tune a feature extractor f , a
ResNet pre-trained on MOT16 ReID [28], which extracts
local features from M. To represent partially visible human
bodies, we further transform these local features into features
associated with the body parts [27]. These features are
denoted as F ∈ RN×C , where N represents the number
of body parts and C is the size of the feature dimension.
Besides, a visibility indicator vi with i ∈ {1, · · · , N} is
defined and set to 1 if the ith body part is visible and 0
otherwise.

In previous RPF works [2]–[4], the feature extractor is
trained offline and fixed under the assumption of inde-
pendent and identically distributed (IID) observations, i.e.,
the training and testing scenarios are assumed to be IID.
However, this assumption may not be valid in an application
such as our RPF. For instance, it may not hold when the
target person’s appearance is non-discriminative in the pre-
defined feature space. One possible solution is to utilize
short-term experiences to fine-tune the feature extractor on-
line. However, optimized features are still not discriminative



enough to recognize the target person. These two problems
are commonly referred to as domain drift [7] and can be
observed from Fig. 3 (a) and (b), respectively. Due to domain
drift problems, the resulting ReID features fail to distinguish
the target person from others across the observed samples in
the sequence.

To address these problems, we adopt the concept of
OCL [7]. Instead of utilizing a fixed feature extractor, we
continually fine-tune the feature extractor with both long-
term and short-term experiences. Due to the requirement of
efficient learning, OCL demands that the model is trained
with only one limited batch at a time, and other batches
are not included. In addition, OCL requires that the batch
should contain current and historical samples. Therefore, we
typically maintain a long-term memory, denoted as L, to
store a subset of historical samples. In every ReID period,
L replays only one batch, denoted as mlt ⊂ L. Besides,
the most recent observed K samples, denoted as mst, are
included to represent the current knowledge. Our OCL
formulation thus can be represented as follows:

arg min
θf

∑
(M,y)∈{mst∪mlt}

E(M,y)[LF (f(M; θf ),y)], (1)

where M represents a person’s image patch and y for label.
f is the feature extractor to be learned, θf is the parameter
of f , and LF is the loss function. In this work, inspired by
[15], a representation that is robust to occlusions is learned
by employing a mixed loss approach. This approach com-
bines cross-entropy loss LCE with part triplet loss Lparts

triplet,
formulated as follows:

LF =
∑

i∈{g,c}

LCE(hi(F),y) + Lparts
triplet(F,y), (2)

where F denotes the part features. The cross-entropy loss
LCE focuses on optimizing the feature extractor to accu-
rately predict the person’s identity y from each holistic
feature hg, hc. The global feature hg ∈ RC is obtained
through global average pooling, while the concatenated
feature hc ∈ R(C·N) is derived by concatenating N part
features. Moreover, the part triplet loss Lparts

triplet considers a
triplet comprising a query sample, the hardest positive, and
the hardest negative. The hardest positive is identified as
the positive sample that is furthest from the query, based
on the average distance across part features, calculated as
dijparts = 1

N

∑N
k=1 ||Fik−F

j
k||2. At the same time, the hardest

negative is selected as the nearest negative sample to the
query.

By continually learning from these experiences (mlt ∪
mst), the feature extractor incrementally acquires current
knowledge while retaining previous experiences. This can be
demonstrated by Fig. 3 (c), which shows that training the fea-
ture extractor in an OCL manner leads to the target person’s
features being distinguishable from others throughout the
observed samples in the sequence. This incremental learning
ability enables the robot to re-identify the target person if
their re-appearance exists in the previous experiences.

After feature extraction, previous works [13]–[15] usually

(a) W/o S&L (b) W/ S only (c) W/ S&L (d) Ideal

Fig. 3. Feature distribution of the target person (positive) and other
distracting people (negative) across all observed samples at the end of
the sequence. “S” represents short-term experiences and “L” for long-term
ones. (a) Pre-trained features without any online optimization. (b) Trained
features with online optimization using short-term experiences only. (c)
Trained features using both short-term and long-term experiences within
our framework. (d) Ideal feature distribution where features are optimized
offline through extensive iterative training.

achieve ReID by averaging the similarities of features across
all query-gallery pairs, assuming that the query feature and
the gallery features are strictly in the same feature space.
This requires one to re-extract features with the latest feature
extractor from all samples in the memory buffer. However,
for the purpose of effective RPF, this approach is not feasible
due to the large size of our long-term memory. Therefore,
to ensure efficient ReID processing, we leverage short-term
experiences to train a classifier (Sec. III-C).

C. Target Classifier

We train a target classifier g using short-term experiences
mst, representing the latest knowledge about the target
person. Here, we employ the ridge regression (RR) model
with L2 regularization as our classifier, although any other
classifiers that are capable of efficient optimization and
inference can also be employed. Specifically, we train N
RR models where each model is represented as Wi ∈ R1×C

corresponding to a part-level classifier. The target confidence
s is estimated by averaging the outputs from all part-level
classifiers:

s =

∑N
i=1 viWiF

T
i∑N

i=1 vi
, (3)

where vi is the visible indicator and Fi ∈ R1×C represents
the ith part feature of F where F = f̄(M). Each RR model
Wi is optimized with the most recent K features extracted
from mst:

arg min
Wi

∥∥WiX
T
i − y

∥∥2
2

+ λ ‖Wi‖22 , (4)

where Xi = {F1
i ,F

2
i , . . . ,F

K
i } ∈ RK×C represents the

features of the ith part. y indicates the labels and λ is
a regularization parameter. The optimal solution, which is
obtained using linear least squares, is given by W∗

i =
(XT

i Xi + λI)−1XT
i y.

This formulation can efficiently regress the classification
boundary since the sizes of both the short-term memory
and feature dimensions are small. Furthermore, it can also
generalize to distinguish historical samples, although the
classifier is trained on short-term experiences only. This
is because optimized features are discriminative enough to
establish a clear classification boundary with a few samples.
This can be observed from Fig. 3 (c) and further verified in
the experiments.



D. Memory Manager

To leverage long-term experiences to mitigate domain drift
problems, we establish a long-term memory denoted as L,
responsible for storing valuable samples, i.e., pairs of image
patches and labels. When presented with a new sample, the
memory manager employs a keyframe selection strategy to
decide whether to add this sample to the memory buffer.
Once the buffer reaches its capacity, memory consolidation
takes effect to create space by purging certain samples. In
addition to the sample insertion and removal, the process
of selecting samples for replay during model optimization
(Eq. 1) is equally important and is overseen by the memory
replay mechanism. In the following, we will introduce our
keyframe selection strategy, as well as the memory replay
and consolidation processes.

1) Keyframe Selection: Adding the newest sample directly
to L may not be appropriate because the appearance of
the target person in adjacent frames is often similar, and
therefore, it may not provide additional information. Since
information in images is temporally correlated and therefore
highly redundant, we insert a keyframe to L only if it is
informative. To this end, inspired by [8], we employ a loss-
guided keyframe selection strategy to assess the significance
of the incoming sample. Specifically, every time a new target
sample is added to L, and the feature extractor is optimized,
we save a duplicate of the latest feature extractor f and
record the loss from this optimization as lt. The subsequent
sample {M,y}id will then be used to optimize the duplicated
f . If the optimization loss is larger than the previous loss lt
by a margin, this sample will be added to L. This process
can be expressed as:

δ = LF (f(M),y)− lt, (5)

if δ > δl, the sample is added to L, indicating that the
forthcoming sample contributes additional information to the
learned feature extractor.

2) Memory Replay and Consolidation: To preserve valu-
able experiences, we follow the standard technique of mem-
ory replay in OCL to replay samples for our feature extrac-
tor learning or consolidate the memory by removing non-
informative samples. Specifically, the consolidation process
is triggered when L is full. For example, Reservoir [26]
adds a sample to L with a probability of |L|/n, where
|L| is the size of the long-term memory and n is the total
number of observed samples. This is executed as follows:
L[i] ← {M,y} if i < |L|, with i = randint(0, n). This
approach inherently reduces the likelihood of later samples
being sampled. Differing from a selection based on se-
quential observation, BioSLAM [9] chooses to remove non-
discriminative samples from long-term memory via online
clustering. In this work, we demonstrate that by leveraging
existing OCL techniques, we can effectively address the
issue of forgetting and enhance the person ReID capability.
Besides, the memory management module itself does not
solve the domain drift problem but is axillary to the feature
extractor that directly tackles the domain drift problem.

Our framework optimizes the feature extractor and the
classifier upon successful identification of the target person,
identification recognized when the target id exists within the
tracked individuals and the target confidence s surpasses the
threshold δsw. When the target person is lost, the algorithm
re-identifies him from all observed individuals. An individual
is considered the target person if his estimated confidence has
surpassed a threshold δsw for consecutive ζreid frames.

IV. EXPERIMENTS

A. Experimental Setup

To ensure fair and consistent evaluation in terms of target-
person-tracking ability for RPF, previous RPF works (such as
[4], [5], [27]) typically assess person-following performance
by evaluating person-tracking performance on a robot-centric
following dataset.

1) Dataset: We conduct experiments on a public dataset
[5] and a custom-built dataset. Both datasets consist of image
sequences with the ground truth provided in the form of
bounding boxes around the target person. The public dataset
includes challenging scenarios such as quick multi-people-
crossing, illumination changes, and appearance variations.
However, this public dataset lacks scenarios that require
person ReID, such as occlusion and similar appearances of
distracting people. To address this limitation, we created a
custom dataset that includes these challenging scenarios. The
custom dataset comprises four sequences named corridor1,
corridor2, lab-corridor, and room.

2) Baselines: To verify the effectiveness of the proposed
RPF framework in terms of target-person-tracking ability,
we first compare it with some popular one-stage baselines.
With frame input, one-stage methods directly output the
target person’s bounding box (e.g., SiamRPN++ [30] and
STARK [31]) or camera movement (e.g., Zhong’s Method
[29]). Moreover, we compare it with some people trackers
(e.g., SORT [32], OC-SORT [33], and ByteTrack [34]),
which can track people’s bounding boxes based on mo-
tion models. However, these trackers alone cannot handle
the target-person-tracking situation and are auxiliary to a
target-ReID module for re-identifying the target person after
long-term occlusion. Therefore, a complete RPF system is
formed by combining each of these people trackers with our
ReID module. Our complete RPF system includes ByteTrack
[34] and the OCL-assisted RPF-ReID module, labeled as
“ByteTrack + RPF-ReID + OCL” as shown in Table I.

To investigate the impact of different methods of memory
consolidation (as illustrated in Sec. III-D) on person ReID
ability, we conduct experiments involving three methods:
BioSLAM [9], MIR [24], and Reservoir [26]. These meth-
ods are employed to assess whether any form of memory
consolidation can enhance the performance of person ReID.
Experimental analysis is shown in Sec. IV-C.

B. Evaluation of our RPF system

1) Metric: The evaluation metric of person tracking relies
on those employed in previous RPF studies [4], [5], [27].
We assess tracking performance in the image space using



TABLE I. Success rate of person tracking (%) of the baseline and our method in the custom-built dataset† and the public dataset [5]. Our complete RPF
system achieves the highest success rate due to the effective ReID performance of our OCL-assisted RPF-ReID module.

Methods Success Rate (%)
corridor1† corridor2† lab-corridor† room† public dataset [5]

Zhong’s Method [29] 63.8 66.8 75.8 44.7 75.8
SiamRPN++ [30] 44.8 55.9 46.1 42.6 93.6
STARK [31] 44.3 83.8 73.1 65.8 96.5

SORT [32] + RPF-ReID 67.3 37.9 31.1 82.4 96.1
OC-SORT [33] + RPF-ReID 67.3 37.9 31.1 82.4 96.1
ByteTrack [34] + RPF-ReID 69.1 20.2 54.2 82.4 96.3
ByteTrack + RPF-ReID + OCL 93.5 94.9 96.0 96.8 97.0

the success rate of person tracking as the evaluation metric,
which is calculated as 1

N

∑N
i=0 ai, where N represents the

number of frames within a sequence and ai is a binary
indicator. It equals one if the distance between the recognized
and ground-truth bounding boxes is less than 50 pixels and
zero otherwise. As for Zhong’s method [29], which is a
reinforcement-learning-based tracker outputting the action
directly, we compare it in the action space (detailed settings
are explained in APPENDIX-A).

2) Experimental Results: The results are shown in Table I.
It can be observed that a people tracker with our RPF-ReID
can achieve better performance than one-stage methods in
corridor1 and room. For example, “ByteTrack [34] + RPF-
ReID” achieves 69.1% and 82.4% respectively. However, this
combination achieves a lower success rate with 20.2% and
54.2% in corridor2 and lab-corridor, respectively. These two
datasets contain significantly more long-term variations, with
more than 5,000 frames recorded. Pre-trained deep features
cannot generalize well to these practical RPF scenarios,
which include different viewpoints and lighting conditions,
suffering from the so-called domain drift problem.

When the feature extractor is fine-tuned online using our
OCL-based memory manager (“ByteTrack + RPF-ReID +
OCL”), it achieves the best performance, with success rates
above 93.5% in all sequences of the custom-built dataset and
97.0% in the public dataset. This indicates the effectiveness
of our proposed OCL-based memory manager in leveraging
online collected experiences to optimize the feature extractor
and mitigate domain drift. In this way, the resulting ReID
features capture more knowledge about the target person,
enabling successful ReID even in challenging RPF scenarios.

C. Online Continual Learning Evaluation

1) Metric: The evaluation of OCL [7] aims to assess how
well the model remembers previous knowledge, which is
essential for person ReID in RPF, as previous knowledge
contains potentially matching experiences for future ReID.
Additionally, incrementally remembering previous knowl-
edge might result in a more generalized feature extractor.
Specifically, we treat the OCL evaluation for person ReID
as a classification task, where we assume that the true
identity of the target person is known in each frame, and the

TABLE II. Experiments on corridor2 and lab-corridor are conducted to
evaluate the ReID mean accuracy at the end of training (r-mEAcc, %) and
success rate (SR, %). All r-mEAcc values are averaged across three runs.

Methods corridor2 lab-corridor
r-mEAcc ↑ SR ↑ r-mEAcc SR

ByteTrack [34] + RPF-ReID 59.2 ± 0.0 20.2 31.7 ± 0.0 54.2
ByteTrack + RPF-ReID + OCL, based on BioSLAM [9] 94.9 ± 2.0 94.9 79.0 ± 22.5 93.8
ByteTrack + RPF-ReID + OCL, based on MIR [24] 94.7 ± 0.8 95.4 86.1 ± 14.3 96.1
ByteTrack + RPF-ReID + OCL, based on Reservoir [26] 96.5 ± 0.4 94.9 94.0 ± 0.7 96.0

model incrementally learns with known labels. For evaluation
purposes, we divide each sequence into eight segments,
each representing different levels of distribution drift. During
incremental learning, after each segment is learned, the
model is evaluated on previously seen segments. Similar to
[7], we use the ReID mean accuracy at the end of training (r-
mEAcc) as our OCL evaluation metric: 1

8

∑8
j=0 a8,j , where

a8,j represents the average accuracy on the jth segment, with
the model learned from all eight segments. Higher r-mEAcc
values indicate that the model retains more of the previous
knowledge during incremental learning.

2) Experimental Results: The results are shown in Ta-
ble II. The row of “ByteTrack [34] + RPF-ReID” utilizes
a pre-trained and fixed feature extractor. In comparison to
the original setup “ByteTrack + RPF-ReID + OCL, based
on Reservoir [26]”, it experiences a significant decline in
performance, with reductions of 37.3% and 74.7% in r-
mEAcc and success rate, respectively, on corridor2. This
underscores the importance of online optimization of the fea-
ture extractor with collected experiences to combat domain
drift and enhance the system’s ReID performance. Moreover,
this approach to discriminative ReID modeling markedly
improves person tracking efficacy, as evidenced by higher
success rate.

We also verify the necessity of our memory management
(introduced in Sec. III-D) for mitigating domain drift. We use
newly observed samples only to fine-tune the feature extrac-
tor without memory management. As shown in Fig. 4, this
naive strategy (“Ours w/o MM.”) leads to significant domain
drift, resulting in a notable decrease in ReID accuracy across
different segments. Such drift significantly undermines the
RPF system’s tracking efficiency, manifesting as success rate
reductions of 4.4% and 11.0% on lab-corridor and corridor2,
respectively. This outcome highlights the value of our mem-



(a) corridor2 (b) lab-corridor

Fig. 4. Plots of ReID mean accuracy w.r.t. encountered segments. “Ours
w/o MM.” indicates fine-tuning the feature extractor without memory
management (introduced in Sec. III-D), using newly observed samples only.
After fine-tuning from a new segment, the model is evaluated on segments
it has encountered previously to determine its mean accuracy. This metric
indicates the model’s ability to retain knowledge from segments learned
earlier.

ory manager in preserving valuable long-term experiences.
By replaying these experiences to mitigate domain drift,
we ensure that our ReID features remain robust, thereby
enhancing the RPF system’s consistent tracking performance.

In summary, the above experiments demonstrate the ef-
fectiveness of optimizing the feature extractor online using
collected experiences managed by our memory manager.
This strategy effectively addresses domain drift, resulting in
enhanced ReID performance within the RPF system. Another
observation is that although the OCL ability of BioSLAM
[9] is worse than Reservoir [26] with r-mEAcc of 79.0% vs.
94.0% on lab-corridor, its tracking accuracy only drops by
2.2%. This indicates that not all historical knowledge needs
to be memorized for person ReID in some situations. How-
ever, we claim that maximizing the enhancement of ReID
ability at a long-term scale is still necessary as it ensures
a discriminative appearance representation for dealing with
complex ReID situations.

D. Runtime Analysis

We conducted a runtime analysis on two computer setups:
a high-end PC and an onboard NUC. For our proposed
ReID module, we tested the following configuration, which
showed the best performance in our experiments: Reservoir-
based [26] memory consolidation, a ResNet18-based feature
extractor where only the layers after conv3 (including conv3)
are trainable, and the RR-based part classifiers.

In the experiment, we ran a separate thread that en-
compasses memory management and feature extractor fine-
tuning, operating independently from the main thread. The
results are shown in Table III. On the high-end PC, the main
thread runs at 35.1 Hz, and the separate thread runs at 22.2
Hz. On the onboard NUC, the threads run at 18.8 Hz and
6.6 Hz, respectively. Therefore, we conclude that our RPF
system can follow a target in real time, as also demonstrated
in the supplementary video.

E. Implementation Details

For all experiments, we set the following default param-
eters: memory sizes |S| = 64 and |L| = 512, a batch
size of 64 for each replay including long-term and short-
term relays, a regularization parameter λ = 1.0 for RR,

TABLE III. Runtime analysis of our RPF framework. Two computer
setups are evaluated, including a high-end PC (Setup 1) and an onboard
NUC (Setup 2 for real-world deployment). We record the average time
cost (ms) per frame. Perception includes bounding-box, human-joint and
human-orientation detections. Tracking denotes the motion tracker. ReID
indicates the re-identification process, including feature extraction and target
estimation. The above three processes run in the Main Thread. A Separate
Thread handles the OCL process, including memory management and
replay, as well as the online continual learning of the feature extractor.
For detailed experimental settings, refer to the supplementary materials.

Setup Perception Tracking ReID Total OCL
(Main Thread) (Separate Thread)

1 18.1 1.7 8.7 28.5 45.1
2 33.4 2.4 12.9 53.2 152.0

a keyframe selection threshold δl = 0.02, an id switch
threshold δsw = 0.35, a ReID threshold δreid = 0.7 and
a number of consecutive frames ζreid = 5. In this paper,
for representing the part-level features, we define ten parts:
{front, back}×{head, torso, legs, feet, whole}.

For orientation estimation, we employ MonoLoco [35]
to infer the orientation using detected joint positions from
AlphaPose [36]. These joint positions are also utilized to
estimate the visible parts. We utilize YOLOX-S [37] for
bounding-box detection. For the tracking module, we utilize
ByteTrack as our tracking method. For our proposed ReID
module, we use ResNet18 as our feature extractor, pre-
trained on the MOT16 dataset [28]. During OCL for the
ResNet18, only the layers after conv3 are trainable (including
conv3).

All evaluations are conducted on both a high-end PC
and an onboard NUC. The high-end PC includes an Intel®
Core™ i9-12900K CPU and NVIDIA GeForce RTX 3090.
The onboard NUC is an Intel NUC 11 mini PC powered by
a Core i7-1165G7 CPU and NVIDIA GeForce RTX2060-
laptop GPU. This NUC is mounted on a Unitree Go1
quadruped robot to perform robot person following in the real
world as shown in Fig. 1 and the submitted video. Besides
the computer, a dual-fisheye Ricoh camera is mounted on
the robot, providing cropped perspective images with a
resolution of 640× 480 and a frequency of 30Hz.

V. CONCLUSION

We approach person ReID in RPF as a problem of online
continual learning for mitigating the domain drift problems.
This enables the RPF system to learn incrementally from
online collected experiences. As a result, the framework
achieves a discriminative appearance representation, allowing
for effective ReID even in challenging scenarios, such as fre-
quent appearance changes, occlusion, and distracting people
with similar appearances. Compared to existing baselines,
our target-ReID framework achieves state-of-the-art perfor-
mance in person ReID within RPF scenarios.

For future work, i) we will explore methods to consoli-
date valuable samples, aiming to maximize the learning of
appearance representations while preventing the forgetting of
previous knowledge. Additionally, strategies for balancing
efficient ReID with incremental memorization in crowded
environments will be investigated. ii) We will create an



application-driven dataset containing practical RPF scenarios
to support the development of person-tracking algorithms for
RPF. These efforts will enhance the robustness and effective-
ness of the OCLReID framework in real-world applications.
Examples include a trolley-cart following system in airports
[38] and shopping-cart assistance [39], which is designed to
aid elderly individuals in dynamic environments.
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APPENDIX

A. Comparison with Active Object Tracking Methods

Active Object Tracking (AOT) methods, as described in [29], utilize an end-to-end approach through reinforcement
learning. These methods process raw video frames as input and generate camera movement actions as output. According to
[29], there are seven discrete actions: move-forward/backward, turn-left/right, move-forward-and-turn-left/right, and no-op.
However, existing person-following datasets, such as Chen’s dataset [5] and our own dataset, only provide ground truth
bounding boxes of the target person. For a valid comparison, we need to map these bounding boxes to the action space. As
noted in [29], a two-stage method (combining single object tracking with a PID controller) can achieve a 100% success rate
if the estimated target bounding box (bbox) is accurate. Therefore, we can deduce the ground truth actions from the ground
truth target bboxes. This approach allows us to evaluate AOT methods within person-following datasets. According to [29],
the objective of the camera action is to keep the target person’s bbox centered in the image, maintaining the same size as
initially observed. The ground truth action is generated according to the horizontal error Xerr = Xb−W/2

W/2 and the size error
Serr =

Wb×Hb−Wexp×Hexp

Wexp×Hexp
shown as in Fig. 5. According to [29], we have the following ground truth action mappings:

(1) Move forward if abs(Xerr) ≤ 0.1 and Serr ≤ −0.2;
(2) Move backward if abs(Xerr) ≤ 0.1 and Serr > 0.2;
(3) No-op if abs(Xerr) < 0.1 and abs(Serr) < 0.2;
(4) Move forward and turn right if 0.1 ≤ Xerr ≤ 0.3;
(5) Turn right if Xerr > 0.3;
(6) Move forward and turn left if −0.3 ≤ Xerr ≤ −0.1;
(7) Turn left if Xerr < −0.3.

Fig. 5. An example to illustrate errors is as follows: The goal of a correct action is to move the target person closer to the center of the image. Here,
(W,H) represents the image’s width and height. (Wexp, Hexp) denotes the size of the expected centered bounding box, initialized by the first bounding
box of the target person. (Wb, Hb) represents the target person’s bounding box size in the current frame, and (xb, yb) is its center point.

This paper aims to evaluate the algorithms’ tracking performance, meaning true target person identification is the first
priority. Therefore, besides evaluating accurate action estimation, we reduce the matching standards. Specifically, we consider
an action to be true if this action tries to move the target person to the center of the image. For example, if the bbox of
the target person is on the left of the image, move backward, turn left, and move forward and turn left are all considered
as true actions. The results are reported in Table. I. An example is shown in Fig. 6. We observe that after a long occlusion
by a visually similar person, Zhong’s method outputs move forward and turn left, failing to re-identify the target person. In
contrast, our method reliably re-identifies the target person even after long-term occlusion.



(a) Zhong’s method [29]

(b) Ours

Fig. 6. An example comparing Zhong’s method [29] and ours. From left to right, the sequence represents observations where a long-term occlusion
occurs. (a) Zhong’s method outputs move forward and turn left due to a failed re-identification of the target person. (b) Our method reliably re-identifies
the target person even after long-term occlusion.

B. Memory Examples

Several replayed examples of our short-term and long-term memories are shown in Fig. 7. For more visual examples of
short-term and long-term memories, please refer to the supplementary video.

Short-term experiences 𝑚!" Long-term experiences 𝑚#"

Long-term memory 𝕃

Replay

Short-term memory 𝕊

Replay

Fig. 7. Both short-term and long-term experiences (mst ∪ mlt) are responsible for training the feature extractor with mst and mlt being sampled
from short-term memory S and long-term memory L, respectively. L contains sparse yet valuable historical samples, maintained by the memory manager.
Besides, the target classifier is trained with mst sampled from S, which stores the most recently observed samples, representing the latest knowledge.

C. Visual Examples during RPF Task

Sampled images are shown in Fig. 8 consisting of the observation of the target person during the robot-person-following
task. We can observe significant changes in the appearance of the target person from left to right including lighting and
viewpoint changes. In such situations, previous methods relying short-term experiences would fail to re-identify the target
person after occlusion. For example, as shown in Fig. 8 (b), short-term experiences capture the latest observation, i.e.,
the back view of the target person. Consequently, when the target person reappears with a front view, these short-term
experiences fail to re-identify them.

In contrast, our method utilizes both short-term and long-term experiences. Specifically, we fine-tune the feature
extractor within our OCL-assisted RPF-ReID module using both types of experiences. This approach constructs a complete
representation of the target person, considering long-term experiences (e.g., the target person’s front view) and short-term
experiences (e.g., the target person’s back view). As a result, our method can re-identify the target person even when they
reappear with a front view.



(a) Lighting changes

(b) Viewpoint changes

Fig. 8. Sampled images of the target person during the robot-person-following task. We can observe significant changes in the appearance of the target
person from left to right. (a) Lighting changes: bright light in the corridor, dim light in a corner, and bright light again in the elevator. (b) Viewpoint
changes: the person’s front view, back view, occlusion, and front view again.

D. Target-ReID Lifecycle

Algorithm 1: Target-ReID Lifecycle
Input: Current image I and tracked people {B,p}i representing bounding boxes and positions, target person’s identity id, target confidence s,

short-term memory S, long-term memory L, feature extractor f and target classifier g
Output: Target person’s position {p}id in the current frame

1 Extract image patches M from I and B;
2 Construct the observation set {M,y}i where y = 1 if i == id, otherwise y = 0;
3 Extract features F from M with f ;
4 if id ∈ {i} then
5 Estimate s of the target person based on Eq. 3;
6 if s > δsw then
7 Consider {̄i} as identities of negative tracks;
8 {M,y}id → S, {M,y}ī → S based on FILO rule;
9 Sample mst from S;

10 Train g with mst based on Eq. 4;
11 ### Separate Thread ###
12 {M,y}ī → L based on FILO rule;
13 {M,y}id → L if it is a keyframe based on Eq. 5;
14 Consolidate L with OCL techniques if L is full;
15 Sample mlt from L;
16 Train f with mst and mlt based on Eq. 1;
17 ### Separate Thread ###
18 Return target position {p}id;
19 else
20 Let id = −1, indicates id switch between the target person and other people;
21 Return ø;

22 else
23 Estimate s of the ith person based on Eq. 3;
24 if s > δreid for consecutive ζreid frames then
25 Let id = i, indicates successful target person ReID;
26 Return target person’s position {p}id;
27 else
28 Return ø;
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