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Abstract— Robot person following (RPF) is a capability that
supports many useful human-robot-interaction (HRI) applica-
tions. However, existing solutions to person following often as-
sume full observation of the tracked person. As a consequence,
they cannot track the person reliably under partial occlusion
where the assumption of full observation is not satisfied. In
this paper, we focus on the problem of robot person following
under partial occlusion caused by a limited field of view of
a monocular camera. Based on the key insight that it is
possible to locate the target person when one or more of his/her
joints are visible, we propose a method in which each visible
joint contributes a location estimate of the followed person.
Experiments on a public person-following dataset show that,
even under partial occlusion, the proposed method can still
locate the person more reliably than the existing SOTA methods.
As well, the application of our method is demonstrated in real
experiments on a mobile robot.

I. INTRODUCTION

Robot person following (RPF) [1] is a capability that
supports many useful HRI [2] applications. Often, the person
being followed can become partially occluded in various
situations due to, for example, other objects or people in
the robot working environment. Therefore, the ability of
following a person under partial occlusion is essential.

RPF can be achieved with a distance measurement sensor
such as a LiDAR and or an RGB-D camera. Methods in
[3]–[8], for example, firstly track multiple people with the
help of a distance measurement sensor. Once a target person
is selected and tracked in the field of view of the robot
sensor, the person can be followed on the basis of the tracked
location. Such solutions, however, can be expensive due to
the high cost of a distance measurement sensor. In addition,
distance sensors lack textural information, and this prevents
them from resolving data association effectively.

Alternatively, one can resort to vision to solve the problem
of person following. [9] uses a vision-based single object
tracker (SOT) [10]–[12] to track the person in the image
space, and relies on visual servo to follow the person. Also
using vision, [13] proposes a method under the assumption
that the neck of the person is always visible. Conceptually, it
can be considered as a single-joint-based method. However,
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(a) Partial occlusion (b) Visible observations

(c) Target person location and following

Fig. 1. (a) An example of partial occlusion caused by a limited FoV of a
camera while performing person following. Existing methods often fail to
locate the person in such challenging scenarios. (b) The proposed method
is based on partial observations, including the bounding box and 2D joints.
(c) Person following under partial occlusion (the pointcloud is used as a
reference for visualization only, and the body parts of the detected person
(target) are marked in green solids in front of the robot).

with a camera of limited field-of-view (FoV), neck visibility
cannot always be guaranteed even though the followed
person may still be partially visible, as shown in the example
in Fig. 1(a). In addition, many deep-learning-based methods
have been developed for estimating a person’s location
through monocular depth prediction [14], monocular 3D
bounding-box detection [15], etc. These methods, however,
are known to experience poor generalization in terms of
adapting to the case of partial observation.

One prior topic of research related to our study is 2D
human joint detection [16][17], which has been well devel-
oped in recent years. It has been demonstrated that human
joints can be detected reliably even under partial observation
as depicted in Fig. 1(b). In this work, We exploit these
well-detected joints of a partially occluded person in person
location estimation. This idea of estimating the 3D pose of an
object or a person from partial observation is not new [18]–
[20]. To design a solution, one can first build a prior model
describing the physical attributes of as well as constraints
between the parts of the whole object/person, and this model
can be created in the form of an implicit representation by a
neural network [18], a parametric model like SMPL (skinned
multi-person linear model) [19], or a CAD model [20]. Then
given a partial observation, the 3D person/object poses can
be inferred from the prior model.

To make use of the above idea in our study of RPF, without
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loss of generality, we build a prior model consisting of the
heights of a person’s joints relative to the ground plane. With
the assumption of a standing person on the ground plane
and a calibrated camera at a known height to the ground,
the person’s location with respect to the camera can be
inferred from any joint detection given the prior model [21].
In fact, each visible joint contributes a location estimate and
the concurrent observations of multiple joints can be fully
utilized through any one of the many existing sensor fusion
techniques such as the Kalman filter. Furthermore, to handle
a crowded scene with multiple people, we perform people
tracking and target re-identification by using the bounding
boxes of detected people and an appearance model of the
followed person respectively. Lastly, a robot motion control
module is implemented to form a complete RPF solution,
which we refer to as visible-joint-based RPF method. In
experiments, our method can follow a target person reliably
even under partial occlusion, as shown in Fig. 1(c).

II. RELATED WORK

A. Monocular Person Tracking in Robot Person Following

A person following robot usually involves four modules:
a detection module, a tracking module, an identification
module and a robot motion control module. The detection
module detects the tracked person in the image. The tracking
module locates the person in terms of a 3D pose with respect
to the robot. The identification module usually maintains an
appearance model useful for re-identification in case of a
lost target. Given the person’s estimated location, the robot
motion control module computes a motion command for the
robot to maintain a desired following position with respect
to the target person.

Many existing works in people tracking [3]–[8] use dis-
tance measurement sensors, which can be expensive and have
difficulty in dealing with cluttered indoor environments due
to the lack of textural information that is critical for data
association. Some works are based on monocular vision. [9]
tracks a person in the image space, and achieves person fol-
lowing with visual servo by keeping the person in the center
of the image plane . Image-based tracking is convenient to
implement but ineffective compared to the position-based
tracking in 3D as the person and the robot move physically
in the Cartesian space, rather than the 2D image space [22].

For estimating a person’s location in the robot coordinate
frame, inspired by well-known techniques in video surveil-
lance [21][22], [13] proposes a single-joint-based method to
locate the person by assuming that the neck of the person
is always visible. However, this assumption cannot always
be satisfied. Given the fact that under partial occlusion, one
or more joints (not necessarily the neck) are still visible, it
should be possible to estimate a person’s location from the
observed joints. Therefore, we propose to use the observable
joints to track the person instead of a specific joint to address
the challenge of partial occlusion.

B. 2D Human Bounding-box Detection and Joint Detection

To develop the detection module of our RPF method, there
are two related topics: 2D human bounding-box detection
[23] and joint detection [24]. 2D human bounding-box
detection [24] seeks to locate people as bounding boxes in
an image, and the methods can be divided into two families:
two-stage [25] and one-stage [26]. A two-stage [25] method
usually first generates category-independent proposals and
then utilizes category-specific classifiers to label the propos-
als, while a one-stage method [26] directly generates labeled
bounding boxes without any proposal generation. In this
paper, we use a one-stage method (YOLOX [26]) to detect
people for its fast inference and stable performance.

2D human joint detection [24] has also been well de-
veloped in recent years. It aims at localizing human joints
(keypoints) in an image. There are also two families of
methods: top-down [17][27] and bottom-up [28][29]. A top-
down method first detects bounding boxes, and then localizes
2D joints within the boxes, whereas a bottom-up method
detects joints first and then groups them into full bodies. We
adopt a top-down method (AlphaPose [17]) in the tracking
module of our visible-joint-based RPF system, due to its
good performance even under partial occlusion.

C. 3D Person Location Estimation

A RPF system must contain a tracking module for person
location estimation, and the current leading methods in
solving this problem are mostly deep-learning-based. Such
methods employ a deep neural network to infer the location
of a person from the observed image in an end-to-end
fashion. MonoLoc [30] first uses a neural network to detect
joints of a person in an image, and then utilizes these
estimated 2D joint positions to locate the person in 3D by
a multi-task neural network. EPro-PnP [31] describes the
pose of a person in the form of a 3D bounding box by
integrating learnable 2D-3D correspondences. RootNet [32]
develops a top-down pose estimation solution that computes
the 3D poses of multiple people with respect to the camera
coordinate frame.

All the methods mentioned above are entirely based on
deep learning, although MonoLoc [30] consists of two
separate networks, one for joint detection and the other
person location, in a way that is similar to our solution.
In addition, their training datasets usually involve a full
observation of the objects of interest. However, in the person
following scenario, a partial observation of the person often
occurs, a situation that these methods cannot deal with
effectively. In our work, we adopt a hybrid approach with
a detection module and a tracking module where a learning-
based detector [17] provides 2D information about the joints
of the target person in an image to a subsequent model-
based 3D person location tracker. The main advantages of
this approach are: 1) 2D joint detectors, compared to the
deep-learning-based methods, are shown to be more robust
with respect to partial occlusion and 2) our proposed model-
based location tracker is able to utilize a prior model of
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Fig. 2. Our proposed visible-joint-based RPF system is composed of a Detection module(Sec. III-A) including 2D person detector, 2D pose detector and
appearance extraction model, a tracking module with track initialization (Sec. III-B), filtering (Sec. III-C), and data association (Sec. III-D), an identification
module (not our focus in this paper) and a robot motion control module.MJ is the prior global model consisting of heights of joints and MW represents
the person’s real width. This system can locate, track, and follow the target person even under partial occlusion.

the target person that easily computes the person’s location
analytically from these well-detected 2D joints.

III. METHODOLOGY

We introduce a novel visible-joint-based method by uti-
lizing any visible joints to track the target person instead of
a specific joint. Together with an identification module and
a robot motion control module (which are not the focus in
this paper), a complete RPF system is formed. The general
overview of our system is shown in Fig. 2.

Typically, our tracking method follows the general process
of the Kalman filter. In model construction (Sec. III-B), from
detections of all joints in the first frame, we first build a
prior model MJ consisting of the heights of the joints with
respect to the ground plane. Then upon the detection of a
target person, the target person’s location can be initialized
with the help of this prior model. In addition, in the filtering
stage (Sec. III-C), tracks are updated with associated joint
measurements where each visible joint contributes a location
estimate, also with the help of the prior model. In the
data association (Sec. III-D), we associate tracks and joint
measurements in the bounding-box-like space due to the
stability of the bounding-box detector. In case of target loss,
our RPF system uses the identification module to re-identify
a target person. Lastly, with the robot motion control module,
person following is performed in the robot coordinate frame
based on the estimated location of the target person.

As in existing works [13][22], the x-y plane of the robot
coordinate frame is parallel to the ground plane. In addition,
we use a calibrated camera whose origin has a known
offset with respect to the robot coordinate frame and whose
orientation is identical to the robot coordinate frame except
for a known positive tilt angle (see Fig. 3).

A. Detection Module

First, we detect people to generate their bounding boxes
and 2D joint positions in the image plane. We use the
bounding boxes and joint positions for tracking the target
person, and we use the appearance features within the
bounding boxes for target identification. Specifically, we use
YOLOX [26] for bounding-box detection and AlphaPose

[17] for joint detection. We exploit all detected joints of a
partially occluded person in his location estimation.

In each image, we define as our observation of a person–
detected bounding box and joint positions including shoulder,
hip, knee and ankle in the image plane. They are represented
as D = {B,P}, where B = {[u, v], w, h} defines the center,
the width and the height of the bounding box, and P is the
set of visible joints–a subset of {pneck,phip,pknee,pankle}
where pi ∈ R2, describes the pixel coordinates of a visible
joint. Note that in our study, we describe each of the three
pairs of hip, knee, and ankle joints by a single 2D point
pi in the image plane. The horizontal coordinate of pi is
that of the bounding box of the detected person; the vertical
coordinate of pi is the average height of the both joints or
that of a single joint, in the pair, depending upon if one or
two joints of the pair are visible.

B. Prior Model Construction and Track Initialization

With above detected observation D in the first frame,
through resolving a well-designed over-constrained mini-
mization problem, we construct a joint-height-based prior
model of the target person, including his position with
respect to the camera, which can be used to initialize the
Kalman filter tracker. The prior model is represented as:

MJ = {hneck, hhip, hknee}, (1)

which corresponds to the heights of the person’s neck, hip
and knee relative to the ankle, which is assumed to be on the
ground at height 0. Further, we define the person’s location
as his ankle location, X ∈ R3, in the camera coordinate
frame with the ground plane constraint–NTX+ γ = 0 [33].
This constraint means that the ground plane is defined with
a known normal N ∈ R3 at a distance γ > 0 with respect
to the optical center (see Fig. 3).

Based on the above definition, the locations of the other
joints can be defined with respect to the ankle location as
Xj ≈ X + hj · N [34] where hj ∈ MJ . In this work,
for model construction, we assume that a full body can be
observed in the first frame and define 3D joint positions by
the set Xall = {Xneck,Xhip,Xknee,X}. We can then obtain
the person’s location X and the prior model MJ by the
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Fig. 3. Example of person’s location estimation with a neck observation.
Any visible joint can be utilized to initialize the person’s location. The
definition of the parameters and the estimation process are shown in Eq. 3.

minimization of the reprojection error:

{X,MJ} = argmin
X,MJ

∑
i

||pi − g(Xi)||22, (2)

where g(Xi) denotes the camera projection function of a 3D
point in the camera coordinate frame to the image plane, i.e.,
g : R3 → R2. After minimization, the prior model MJ is
obtained, as is the person’s location X, which serves as the
initial state of the Kalman filter tracker (see next section).

WithMJ constructed, in any of the following frames, the
person’s location X can be re-initialized from any one visible
joint by Eq. 3 [21] upon target loss and re-identification,
without the need to observe the full body. Given the homo-
geneous pixel coordinates p̄j = [u, v, 1]T of a joint, camera
intrinsics K, normal vector with N and its length γ, and the
observed height of a joint hj , we can compute the person’s
location as:

r = K−1p̄j

Xj =
|γ − hj |
|NT r|

· r

X ≈ Xj − hj ·N

(3)

Theoretically, we can initialize the person’s location by
any joint using Eq. 3. However, in practice, because the noise
level in the observed joints varies, we prefer to initialize
with Eq. 3 from the most reliable joint. Empirically, when
using AlphaPose [17], we observe 1) the upper body is more
stable than the lower body for a walking person [35]; 2) the
shoulder is more distinguishable than the hip because the
shoulder is near the background; and 3) the movement range
of the knee is smaller than the movement range of the ankle.
Therefore, we use Eq. 3 to initialize the person’s location
with only one joint, in the order of neck, hip, knee, and
ankle.

C. Filtering

After the construction of MJ and the initialization of the
target location, we adopt the unscented Kalman filter (UKF)
as our filtering framework due to its advantages in dealing
with non-Gaussian noise and non-linear observation function.

In our UKF-based filtering, the state to be estimated only
includes the person’s location and velocity on the ground
plane, defined as st = [xt, yt, ẋt, ẏt]

T , which is enough to
satisfy the need for person following. Further, a constant
velocity motion model is assumed, i.e., for motion prediction,

st+1 = st + ∆t · [ẋt, ẏt, 0, 0]T , (4)

where ∆t is the time interval between two consecutive
frames. Then we update the state with all visible joints so
that each visible joint can contribute a location estimate. In
other words, the update step of the Kalman filter depends
on the joints that are visible. As defined in Sec. III-A, on
the image plane, 2D visible joint positions are a subset of
{pneck,t,phip,t,pknee,t,pankle,t}. Let Xvis,t be the corre-
sponding 3D joint locations in the camera coordinate frame.
Then in the image plane, our observation model used by the
UKF is defined by:

zt = [g(Xj,t)]
T ,Xj,t ∈ Xvis,t. (5)

D. Data Association

In this filtering framework, we perform data association
based on the bounding box information B instead of the
joint information P . Because 2D joint detection, compared
to the bounding-box detection, is noisy due to occlusion and
motion blur, leading to incorrect data association. Therefore,
by assuming the person’s shape is a cylinder with width MW ,
we can associate the person’s location X to the bounding box
measurement [u,w]T by calculating the following expected
observation:

ū = g(X)|x, w̄ = fx ·MW /Xz, (6)

where ū and v̄ represents expected the horizontal component
of the bounding-box center and the bounding-box width
respectively; g(X)|x represents the horizontal component of
the pixel; fx is the focal length of the camera. Then our
distance metric is defined as:

d = ((ū− u)2 + (w̄ − w)2)1/2, (7)

where ū, w̄ are from Eq. 6 and u,w are from the bounding-
box information B. Finally a global nearest neighbor method
is utilized to match the measurements to the tracks.

IV. EXPERIMENTS

To verify the performance of our proposed visible-joint-
based method and the whole RPF system, we conduct
experiments on different datasets. In this section, we first
introduce the datasets, the baselines and implementation
details of our experiments. Secondly, the effectiveness of our
visible-joint-based method is demonstrated by a comparison
with the single-joint-based and deep-learning-based methods
on a custom-built dataset. Lastly, we show the superiority of
our whole RPF system on a public person following dataset.

A. Datasets

RPF needs accurate person location estimation and con-
tinuous target person tracking. To test these two aspects



of our method, we evaluate it on two datasets named as
person location (PL) dataset and person tracking (PT) dataset
respectively. The PL dataset is a custom-built dataset in-
volving four sequences where the 3D location of a partially
occluded person is recorded by a motion capture system or
a LiDAR sensor. The distance between the person and the
robot varies between 0.5m - 6.0m. Some examples are shown
in Fig. 4 where an occluded body is often observed, a difficult
condition for location estimation. For evaluation of tracking
continuity in the 2D image space, the PT dataset, a public
dataset [36] with eleven sequences, is used where the target
person’s ground truth position is represented by a bounding
box. This dataset involves challenging situations including
illumination change, appearance change and occlusion due to
people crossing, which are hard for continuous target person
tracking.

B. Baselines

For evaluating the accuracy of 3D location estimation of
our method on the PL dataset, we conduct a comparison
with single-joint-based and deep-learning-based methods
introduced in Sec. II-C. All compared methods locate the
person in the camera coordinate frame. They are named as
follows:
• Single-joint-based [13] tracks the person only when the

full body is observed including his neck.
• MonoLoco [30] could locate the person directly by a

neural network with the 2D pose of the person as input.
• Mono3DBox predicts the 3D bounding box of the

person based on EPro-PnP [31] of which the bottom
center is utilized as the estimated location.

• Mono3DPose performs person location by predicting
his 3D root location through RootNet [32].

• MonoDepth, based on MiDas [37], first obtains the
scene depth map and the person’s bounding box, then
the distance to the person is achieved by averaging the
reduced region of the person’s depth map. Subsequently,
the location of the person can be obtained with the
camera reprojection.

All estimated locations are transformed to the ground plane
and smoothened by the UKF in our evaluation. The main
purpose of this comparative experiment is to establish that
our solution to location estimation is superior to these SOTA
methods in the case of partial occlusion due mostly to the
assumption of full-body observation by these SOTA methods
during their training.

In addition, we evaluate the person tracking ability of the
whole RPF system (involving visible-joint-based method and
the identification module) as previous RPF works [36] [13],
which regard RPF as a special case of the object tracking. For
comparison with object tracking methods, our RPF system,
although assuming a calibrated camera to the ground plane to
track the person in 3D space, is evaluated in the image space
by the associated bounding boxes. Specifically, we compare
our RPF system with popular MOT (multiple object tracking)
and SOT baselines, including QDTrack [38], Bytetrack [39],
SiamRPN++ [40] and STARK [41]. These methods initialize

(a) 0.5m - 1m (b) 1m - 1.5m

(c) 1.5m - 3m (d) 3m - 6m

Fig. 4. Examples of the custom-built dataset for evaluating the location
accuracy of existing methods. From (d) to (a), with the distance decreasing,
more joints are occluded. Our method can accurately locate the person under
such partial occlusion.

the target person by specifying the ID of the desired person
(for MOT) or annotating his bounding box in the first frame
(for SOT).

C. Implementation Details

In our method, bounding-box detection model relies on
YOLOX [26] and 2D joint detection on AlphaPose [17].
The feature extraction model used for appearance description
is a deep re-identification model based on CNN [42]. The
minimization problem in model construction (Eq. 2) is solved
by the Levenberg-Marquardt algorithm.

All evaluations are run on a computer with Intel® Core™
i7-10700F CPU @ 2.90GHz and NVIDIA GeForce RTX
2060. For real robot experiments, a Clearpath Dingo-O and a
laptop with Intel(R) Core(TM) i5-10200H CPU @ 2.40GHz
and NVIDIA GeForce RTX 1650 are used. A RealSense
D435i with 1280 × 720 resolution and 30Hz frequency is
mounted on the robot.

D. Experimental Results

1) Evaluation of visible-joint-based person location esti-
mation: This experiment is conducted on the PL dataset,
and three metrics are used for evaluation: 1) average lo-
cation error (ALE) is calculated in the Euclidean space of
the ground plane, 2) recall is the ratio of the number of
recognized frames to that of all frames, and 3) weighted
location error (WLE) is the proportion of ALE to recall,
which can evaluate the overall effectiveness of a location
estimation method considering both accuracy and robustness.
Results are shown in Table I. We can observe that, compared
to other methods, our method achieves the lowest WLE in all
sequences at 0.11m, 0.09m, 0.10m and 0.08m respectively.

The single-joint-based method [13] achieves a 0.10m ALE
and a 64.0% recall in Sequence I where a full body can be
observed occasionally. While in other sequences where only
a partially occluded body is observed, the single-joint-based
method always fails to locate the target person as expected.
MonoLoco [30] and Mono3DBox [31] also perform poorly
with a low recall and a high ALE, especially on Sequence II
to IV. Mono3DPose [32] and MonoDepth [37] can work on



TABLE I. Comparison of location performance between our method and esisting baselines on the PL dataset. All sequences are captured within a distance
range of 0.5m-2m, except sequence I is within 0.5m-6m. † indicates deep-learning-based methods. ALE (m) represents average location error, Recall is
the ratio of the number of recognized frames and that of all frames, and WLE (m) is the proportion of ALE to recall. %means the algorithm fails to
locate the target person in case of failed recognition or the ALE is larger than 5 meters. Our method achieves the lowest WLE in all sequences at 0.11m,
0.09m, 0.10m and 0.08m respectively.

Methods I II III IV
ALE ↓ Recall ↑ WLE ↓ ALE Recall WLE ALE Recall WLE ALE Recall WLE

Single-joint-based [13] 0.10 0.64 0.17 0.12 0.04 3.28 % % % % % %

MonoLoco† [30] 1.07 0.48 2.22 % % % % % % % % %
Mono3DBox† [31] 0.25 0.66 0.38 0.59 0.21 2.76 2.10 0.09 22.25 1.59 0.39 4.12
Mono3DPose† [32] 0.36 0.95 0.38 0.51 1.00 0.51 0.95 1.00 0.95 1.11 1.00 1.11
MonoDepth† [37] 0.57 1.00 0.57 0.32 1.00 0.32 0.36 1.00 0.36 0.22 1.00 0.22
Ours 0.11 1.00 0.11 0.09 0.98 0.09 0.10 1.00 0.10 0.08 0.92 0.08

TABLE II. Evaluation of 2D target person tracking between our method
and other object tracking baselines on the PT dataset. Our visible-joint-based
RPF system achieves the best performance with a 97.5% accuracy.

Methods Type Accuracy (%)

QDTrack [38] MOT 48.0
Bytetrack [39] MOT 88.6

SiamRPN++ [40] SOT 93.6
STARK [41] SOT 96.5

Single-joint-based RPF 92.0
Visible-joint-based RPF 97.5

almost all frames with near 100% recall but at the expense
of a higher ALE compared to our method.

2) Evaluation of our RPF system: The evaluation of our
visible-joint-based RPF system is conducted independently
from considering robot control as a special case of object
tracking. Thus we compare the RPF system with other
popular object tracking baselines on the PT dataset based
on the accuracy metric. Accurate tracking is defined by
considering a recognized target person’s bounding box as a
true positive if the distance between estimated and ground-
truth centers of the bounding boxes is less than 50 pixels.

Results are shown in Table II. STARK [41] achieves
good performance in MOT and SOT baselines with a 96.5%
accuracy, while our method achieves the best accuracy at
97.5%. This indicates that in person following, our method
can track the target person as well as the popular object
tracking methods. Our RPF system, despite the power of
our person identification module (which is not the focus in
this paper), achieves continuous target person tracking due
largely to the ability of tracking under partial occlusion. This
can be further verified by the comparison of single-joint-
based and our visible-joint-based RPF systems where only
the location estimation method is different. We can observe
that if the method changes to single-joint-based, the accuracy
drops to 92.0%.

E. Discussion

As is shown in Table I, the proposed method achieves
the best location estimation performance with a 0.10m ALE,
a 98% recall and a 0.10m WLE on average. Compared to
the single-joint-based method, it can accurately locate the

person even under partial occlusion. Such results indicate
that: 1) 2D learning-based pose estimator (AlphaPose [17])
can perform well under partial occlusion; and 2) our model-
based method is able to utilize these well-detected joints
to locate the partially occluded person. Compared to the
deep-learning-based baselines, our method is also superior
because the learning-based methods are limited in terms of
generalization, and are therefore sensitive to environmental
changes. On the other hand, our hybrid approach is not
dependent on labeled 3D training data, and yet outperforms
the baselines. In conclusion, due to the combination of the
robust 2D learning-based joint detector and our model-based
location estimator, our visible-joint-based method is able
to locate the person accurately in robot person following,
especially under partial occlusion.

From Table II, we can observe that our method achieves
the highest accuracy at 97.5% which is higher than that of
the MOT and SOT baselines. Such a result indicates that,
in person following, our method is reliable for not only
locating the person accurately but also tracking the person as
persistently as these well-designed object tracking methods.
The accuracy of our RPF system would drop by 5.5% if the
location method changes to a single-joint-based one. This
is because, on the PT dataset, there are many situations of
partial occlusion, caused by people crossing, corner walls and
limited FoV. In above cases, the single-joint-based method
would lose the person while our method can persistently
locate the person and correctly handle these situations of
partial occlusion.

V. CONCLUSION

In this paper, for performing robot person following under
partial occlusion, we propose a practical visible-joint-based
method to locate the person with the observation of any of his
neck, hip, knee and ankle joints. Our method takes advantage
of a prior model of the tracked person and uses one or more
of observed joints for locating the person. The key benefit
of our method is that it can locate the person accurately
and persistently even under partial occlusion. Compared to
baselines, our RPF system achieves SOTA target person
tracking performance across multiple evaluation metrics.
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