
Robotica (2022), xx:xx 1–7
doi:10.1017/xxxxx

RESEARCH ARTICLE

Condition-Invariant and Compact Visual Place Description
by Convolutional Autoencoder
Hanjing Ye#12, Weinan Chen#3, Jingwen Yu12, Li He12, Yisheng Guan3 and Hong Zhang*12

1Shenzhen Key Laboratory of Robotics and Computer Vision, Southern University of Science and Technology, Shenzhen, China.
2Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China.
3School of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou, China.
*Corresponding author. E-mail: hzhang@sustech.edu.cn.
#Hanjing Ye and Weinan Chen contribute equally to this paper.

Received: xx xxx xxx; Revised: xx xxx xxx; Accepted: xx xxx xxx

Keywords: Visual place recognition, Dimension reduction, Convolutional autoencoder, Visual navigation

Abstract
Visual place recognition (VPR) in condition-varying environments is still an open problem. Popular solutions are
CNN-based image descriptors, which have been shown to outperform traditional image descriptors based on hand-
crafted visual features. However, there are two drawbacks of current CNN-based descriptors: a) their high dimension
and b) lack of generalization, leading to low efficiency and poor performance in real robotic applications. In this
paper, we propose to use a convolutional autoencoder (CAE) to tackle this problem. We employ a high-level layer of
a pre-trained CNN to generate features, and train a CAE to map the features to a low-dimensional space to improve
the condition invariance property of the descriptor and reduce its dimension at the same time. We verify our method
in four challenging real-world datasets involving significant illumination changes, and our method is shown to be
superior to the state-of-the-art. The code of our work is publicly available in https://github.com/MedlarTea/CAE-
VPR.

1. Introduction

Visual place recognition (VPR) is essential in autonomous robot navigation. VPR enables a robot to rec-
ognize previously visited places using visual data. VPR provides loop closure information for a SLAM
algorithm to obtain a globally consistent map. Furthermore, VPR can support re-localization in a pre-
built map of an environment. Due to its essential role, many VPR methods [23] have been proposed.
However, in long-term navigation tasks, significant appearance variation, typically caused by seasonal
change, illumination change, weather change and dynamic objects, such as those shown in Fig. 1, is still
a challenge to VPR.

VPR is typically formulated as an image-matching procedure, which can be divided into two steps.
The first step of VPR, also known as loop closure detection in the literature, selects candidates where
map images are represented by global descriptors and a matching procedure between the map images and
the current robot view can be performed in terms of image similarity. In the second step of VPR, verifi-
cation is conducted via multi-view geometry, which uses keypoints in the images to determine if a query
image (current robot view) is geometrically consistent with a candidate map image [22, 1, 33, 6, 9, 8, 40].

© The Author(s) 2022.

https://crossmark.crossref.org/dialog?doi=10.1017/xxxxx
https://github.com/MedlarTea/CAE-VPR.
https://github.com/MedlarTea/CAE-VPR.

2 Cambridge Authors

Figure 1. To improve visual place recognition, we employ a CAE to compress a CNN-generated descrip-
tor and gain a condition-invariant and low-dimensional image descriptor. This figure has shown the
effectiveness of our descriptor. The top row is query images (current robot view), and the below row
is matching images that are successfully matched by our descriptor. From left to right, they are from
summer-winter traverse of Nordland [28], day-night scene of UACampus [21], and autumn-night and
snow-night sequences with dynamics of RobotCar [24].

In this paper, we focus on the first step of loop closure detection, namely, the generation of loop clo-
sure candidates efficiently and accurately. Traditionally, a global descriptor is obtained by aggregating
the handcrafted local descriptors, like SIFT [22], ORB [33] and SURF [6]. In the case of significant
appearance variations caused by, e.g., the day-night, season change and dynamic objects, handcrafted
descriptors often fail to recognize places since locally keypoint descriptors can change significantly with
the condition-dependent appearance. Convolutional neural networks (CNNs) have shown their advan-
tages in various visual recognition tasks [20, 12, 32] and have been used to generate global image
descriptors for visual loop closure detection. In [37], a pre-trained CNN is firstly used to produce a global
descriptor directly. Alternatively, end-to-end trained descriptors with aggregating methods [2, 11, 30, 13]
are proposed to gain higher performance.

However, deep learning-based VPR methods have some limitations. Firstly, a pre-trained CNN may
generate descriptors easily with a dimension in the 10’s of thousands, and hence result in time and stor-
age problems. Secondly, the generalization ability of CNN descriptors is often poor. To tackle these
limitations, we use a CAE to compress a CNN-generated descriptor and improve its generalization abil-
ity. Experiments on challenging datasets show that, by compressing the local feature maps of a CNN by
CAE, the compressed descriptor achieves better results than the uncompressed descriptor in both seen
and unseen environments at a lower computational cost.

2. RELATED WORK

2.1. Visual Place Recognition

In this paper, our concern is using a global descriptor to represent an image for loop closure detection. In
the early works, VPR has been attained by extracting handcrafted local keypoints and descriptors firstly,
such as SIFT [22], ORB [33] and SURF [6]. Then, these local features are aggregated to a global descrip-
tor by vector quantization such as bag-of-words [36, 18, 29], VLAD [3] and Fisher Vectors [19]. Through
clustering, a low-dimensional global descriptor can be achieved although spatial relations between the
local descriptors are not encoded. Although these traditional methods have been widely used in SLAM
(simultaneous localization and mapping) research, they still struggle in large-scale environments with
severe appearance changes [23].

Recently, researchers have proposed to use CNNs to extract features for loop closure detection in
large-scale environments. At first, pre-trained classification CNNs are directly used to extract dense local

Robotica 3

3 × H ×W ...

Pre-trained CNNs

L
a

ye
r

N
o

rm
a

liz
a

ti
o

n

Train

CAE

Global DescriptorFlatten

(𝐷′′×𝐻′′ ×𝑊′′)𝐷′ × 𝐻′ ×𝑊′

Test

L
2

N
o

rm
a

liz
a

ti
o

n

Figure 2. The detailed pipeline of our system. Given an image with 3 × 𝐻 ×𝑊 , CNNs extract the local
feature map 𝑋𝑖 with 𝐷 ′×𝐻 ′×𝑊 ′ . The CNNs are classification pre-trained or VPR-trained, e.g. AlexNet,
VGG16. Both are cut at the last convolutional layer (conv5), before ReLU. In the training time, CAE is
trained unsupervised by a reconstruction loss. In the test time, the decoder part of CAE is not involved
and the encoder part is kept to compress the normalized feature map and produce a low-dimensional
global descriptor with 𝐷 ′′ × 𝐻 ′′ ×𝑊 ′′ . The global descriptor is then flattened and L2 normalized..

feature maps [37, 34, 5], which serve as the visual features for visual place description. However, due to
their high dimensions and inability to adapt to crowded environments, an end-to-end training model with
a feature extractor and a pooling layer has been proposed, e.g., NetVLAD[2], SFRS[11], generalized-
mean pooling [30], max pooling [38] and average pooling [31]. Although end-to-end models can perform
well in crowded environments with low dimensions, training bias is introduced by training datasets. It
leads to a poor generalization of the end-to-end trained descriptors to unseen environments. Here, we
use the unsupervised method of CAE to learn an image descriptor by minimizing the reconstruction loss
of the high-level features of a CNN instead. This enables the encoded descriptor to attain discriminative
features and generalize to unseen environments with a lower dimension.

2.2. Convolutional Autoencoder

CAE has shown its superior performance in many applications. The first usage is to learn a feature
extractor unsupervised by reconstructing input images as a pre-processing method, then finetuning the
encoder with other downstream tasks[25]. Another usage is to learn a mapping function by reconstruct-
ing the input images to other domain information, e.g. flow image, depth image, path planning image
and so on. CGAN (conditional generative adversarial nets) [27] and pix2pix [17] use CAE as their basic
architecture to transfer, such as from day to night, from labels to faces and from edges to a photo. More-
over, in U-Net [32], semantic segmentation is achieved by a CAE-like architecture. Recently, Madhu et
al. [39] propose a CAE-based GAN to estimate depth maps from night-time images. It is worth noting
that it also uses the descriptor from the encoder to accomplish the day-night VPR task. Merrill et al.
[26] utilize CAE to force the output of the decoder to be similar to the histogram of oriented gradients
(HOG), and the output of the encoder is used as a global descriptor in the inference procedure.

Differently from the above usages of CAE, in this paper, we propose to use CAE to reconstruct the
high-level features of the CNN, which is a post-processing method for decreasing the dimension of the
features and promoting place recognition performance. The most similar to this idea is that Dai [10]
uses a CAE to compress and fuse the local feature maps of the image patches for improving loop closure
verification. Unlike this, the CAE in our method reconstructs the feature maps of the whole image,
instead of feature maps of local image patches. In this way, our encoder can capture the most relevant
features of the whole image for VPR.

3. APPROACH

In this section, we describe our network architecture and training strategy. The overall structure is shown
in Fig. 2. In our framework, a local feature map is extracted from a pre-trained CNN. Specifically, the

4 Cambridge Authors

𝒅𝟏, 4 x 4, 1

Encoder

𝒅𝟐, 7 x 5, 2

𝒅𝟑, 5 x 3, 2

Vgg

𝒅𝟑, 5 x 3, 1

𝒅𝟐, 7 x 5, 2

𝒅𝟏, 4 x 4, 1

Decoder

𝒅𝟏, 4 x 4, 1

Encoder

𝒅𝟐, 5 x 3, 2

𝒅𝟑, 5 x 3, 2

Alexnet

𝒅𝟑, 5 x 3, 2

𝒅𝟐, 5 x 3, 2

𝒅𝟏, 4 x 4, 1

Decoder

Encoder’s block

Conv2d(c, k, s)

Batch Norm(c)

PReLU

Decoder’s block

ConvTrans2d(c, k, s)

Batch Norm(c)

PReLU

Figure 3. The architecture of our CAE. Every encoder block contains Conv2d, Batch Normalization
and PReLU layer. In the decoder block, Conv2d is replaced with ConvTranspose2d. c, k, s in the picture
means channels, kernel size and stride, respectively. 𝑑3 is a changeable parameter of the last convo-
lutional kernel channels of the encoder, to produce the global descriptor with variable dimensions..

local feature map is extracted by a high-level layer of a pre-trained CNN. The map is then normalized
[4] and fed into the CAE. In the training procedure, the CAE consisting of an encoder and a decoder is
trained by a reconstruction loss. However, in the inference step, the decoder part is dropped and only the
encoder part is kept to produce the image descriptor.

3.1. Feature Extraction

Different layers of CNNs describe an image at different levels of semantics [37, 15]. In the VPR task,
we choose the feature map of a deep layer, which is found in previous works to be condition-invariant
and low-dimensional.

Similar to [2], we choose AlexNet [20] and VGG16 [35] as our backbone. The local feature map 𝐹
is computed as:

𝐹 = 𝑓𝜃 (𝐼) (1)

where 𝐼 is an input image with a dimension of 3 × 𝐻 ×𝑊 . 𝐻 and 𝑊 are the height and width of the
input image. 𝑓𝜃 is a VPR-trained or pre-trained CNN without fine-tuning. In our work, 𝐹 is from the
last convolution layer of a CNN, before ReLU. For AlexNet, the dimension of 𝐹 is 256 × (1

16𝐻 − 2) ×
(1
16𝑊 − 2). For VGG16, the dimension is 512 × 1

16𝐻 × 1
16𝑊 . At such high dimensions, the global

descriptor is of low computational efficiency to be stored and compared algorithmically for real-time
performance. To tackle these problems, we use a CAE to compress the descriptor into a low-dimensional
representation while promoting its condition-invariant capacity.

3.2. Convolutional Autoencoder

Given a high-dimensional local feature map 𝐹, we first normalize it with layer normalization [4]. Then,
a CAE with three encoder layers and three decoder layers is trained to reconstruct the normalized feature

Robotica 5

map. The architecture and the whole training strategy are:

𝑦 = 𝑔𝜃 (ℎ(𝐹))
= 𝑔𝑑𝑒𝑐 (𝑔𝑒𝑛𝑐 (ℎ(𝐹)))
𝑚𝑖𝑛 𝐿𝑚𝑠𝑒 (ℎ(𝐹), 𝑦)

(2)

where ℎ(𝑥) is a layer normalization function [4], 𝑔𝜃 is a CAE with an encoder 𝑔𝑒𝑛𝑐 and a decoder 𝑔𝑑𝑒𝑐.
In the training procedure, we reconstruct the normalized local feature map ℎ(𝐹) to train the CAE. We
use mean squared error and backpropagation to reconstruct the normalized feature map ℎ(𝐹). The mean
squared error is defined as:

𝐿𝑚𝑠𝑒 =
1

𝑛
∥ℎ(𝐹) − 𝑦∥22 (3)

where 𝑛 is the dimension of the local feature map 𝐹. The layer normalization ℎ(𝑥) is defined as:

ℎ(𝑥) = 𝑥 − 𝐸 [𝑥]√︁
𝑉𝑎𝑟 (𝑥) + 𝜖

(4)

where 𝑥 is a sample, 𝐸 [𝑥] and 𝑉𝑎𝑟 (𝑥) are the mean and variance of the sample respectively, both
of which are updated during training but frozen in the inference step. 𝜖 is a given value added to the
denominator for numerical stability, which is set to 10−5 in our study. Empirically, a layer normalization
can help to stable the optimization procedure and speed up the convergence.

Classic dimension reduction methods, e.g., PCA, only detect the linear relationship between features.
For deep-learning-based pooling approaches, e.g., GeM [30], max pooling [38] and average pooling
[31], they directly aggregate the 𝐷 ′ × 𝐻

′ ×𝑊 ′ local feature map into a descriptor with 𝐷
′ dimen-

sions. Because the features across spatial dimensions are directly aggregated, the spatial information
in the feature map is therefore lost. In contrast, our CAE compresses the feature map non-linearly while
maintaining the spatial relationship. In addition, the local feature map 𝐹 is usually sparse and high-
dimensional [7], indicating that only a few regions of a feature map have a solid response to a particular
task like VPR or classification. With these attributes, our CAE can keep the most relevant features by
reconstructing the input.

As shown in Fig. 3, in our CAE, each block in the encoder/decoder is composed of a convo-
lutional/deconvolutional unit, a batch normalization unit [16] and a parametric rectified linear unit
[14].

Since our CAE is based-on VGG16, the kernel sizes of three encoder blocks are 4 × 4, 7 × 5, 5 × 3,
with strides 1, 2, 2, respectively. The channels of the first two encoder blocks are respectively 𝑑1 and 𝑑2.
Similar to [10], to generate descriptors of different dimensions for comparison, the channels of the last
encoder block 𝑑3 are accordingly set to 8, 16, 32, 64, 128, 256 and 512. For AlexNet, the kernel sizes
of three encoder blocks are 4 × 4, 5 × 3, 5 × 3, and the strides are 1, 2, 2, respectively. We adopt the
same configurations as the encoder channels of VGG16 in our AlexNet encoder. For both architectures,
the parameters of the decoder are similar to the encoder.

In the inference step, the decoder is not involved and the encoder is used to infer the compressed
descriptor:

𝑋 = 𝑔𝑒𝑛𝑐 (ℎ(𝐹)) (5)

where 𝑋 is then flattened and L2-normalized to generate the final global descriptor. In the matching step,
images are represented by the descriptors. Then a cosine similarity is utilized to find the best match in
the reference set for a query image.

6 Cambridge Authors

Table 1. Summary of the experimental datasets. RobotCar (dbNight vs. qAutumn) indicates that a night
sequence is used as the reference set (database) and an autumn sequence is the query set..

Dataset Environment Traverse Appearance ChangeReference Query

Nordland Train Journey 1415 (summer) 1415 (winter) Very Strong
UACampus Campus 647 (night) 647 (day) Very Strong
RobotCar (dbNight vs. qAutumn) Urban 7504 (night) 1046 (autumn) Very Strong
RobotCar (dbNight vs. qSnow) Urban 7504 (night) 1043 (snow) Very Strong
RobotCar (dbSunCloud vs. qSnow) Urban 7504 (sunCloud) 1043 (snow) Strong
RobotCar (dbSunCloud vs. qAutumn) Urban 7611 (sunCloud) 1046 (autumn) Moderate

4. EXPERIMENTS SETUP

4.1. Dataset

To evaluate the performance of our proposed method, four datasets are utilized in the experiments,
including Oxford RobotCar[24], Nordland[28] and UACampus[21] where only a part of the Oxford
RobotCar is used as the training set and other datasets are used as the test set. These datasets contain
significant appearance changes, in urban, train track, university campus and city simulation environ-
ments. Sample images from the datasets are shown in Fig. 1. A detailed description of the datasets is
provided in Table 1 as well as below.
Oxford RobotCar [24] is an urban dataset that records a 10km route through central Oxford multiple
times over one year. Within this dataset, challenging views with appearance changes are captured due
to season, weather and time of the day. We choose a subset consisting of five sequences1 involving
sun cloud, autumn, snow and night environments, all of which contain strong appearance changes. To
validate the effectiveness of our method, the dataset is separated with no overlap. Specifically, we extract
a front-view image per meter for all sequences to construct the datasets. As shown in Fig. 4, the red
route is the training set which includes 24k images, the green route is the test set, and the blue route
represents the validation set. In the matching procedure, we have a query and a reference set. The query
set contains the images of the green route, and the reference set includes the images of the whole route
to increase the difficulty of matching. If the distance between a matched pair is within 25m, the decision
is considered as a true positive.
Nordland [28] is a train journey dataset that contains significant seasonal changes. In this paper, summer
and winter traverse are used as reference and query respectively. If the reference image is within two
frames relative to the query, it is treated as a true positive.
UACampus [21] is a campus dataset with day-night illumination changes recorded on the campus of
University of Alberta. Here, two subsets were captured in the morning (06:20) and evening (22:15) along
the same route. Ground truth matching is available by manual annotation.

4.2. Evaluation Metric

Recall@1,5,10. To verify the overall performance of an image descriptor, we follow the common evalu-
ation metric defined in [2], which is based on the top 𝐾 nearest neighbors among all database descriptors
to a query one. It can identify the matching ability of the descriptor in a tolerable interval. Matching is
considered successful if the correct match exists within the top 𝐾 nearest pairs. 𝐾 is set to 1, 5 and 10
in our experiments.

1suncloud: 2014-12-09-13-21-02, night: 2014-12-10-18-10-50, 2014-12-16-18-44-24, autumn: 2014-11-18-13-20-12, snow: 2015-02-03-08-45-
10

Robotica 7

Figure 4. Dataset separation for RobotCar which is strictly geometrically non-overlapped. The red
route is for CAE training, the green route represents the test set, and the route with blue indicates the
validation set..

Precision-Recall Curve. Precision-Recall is another key evaluation metric in VPR. In the robotics field,
top 1 matching pairs are vital because a decision must be made in the robot running. Given matched
pairs and a threshold in terms of cosine similarity between image descriptors, we have the numbers of
true positives, false positives and false negatives. precision and recall are defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(6)

Multiple pairs of precision-recall (PR) values are produced by varying the threshold, and a PR-curve
is regressed from the points formed by these pairs. A high threshold often causes low recall and high
precision because a strict matching policy always reduces false positives (FP) but at the cost of many
false negatives (FN). The ideal performance is when both precision and recall are high.
Average Precision (AP). The overall performance is usually represented by the average precision. It
summarizes a precision-recall curve as the weighted mean of precisions achieved at all recall values:

𝐴𝑃 =
∑︁
𝑛

(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛 (7)

where 𝑃𝑛 and 𝑅𝑛 are the precision and recall, respectively. 𝑛 is the 𝑛𝑡ℎ threshold. Intuitively, AP is the
integral of the precision-recall curve.
L2 distance distribution. To test the discriminative capacity of our global descriptor, we draw the his-
togram distribution of L2 distances of the true matches and the false matches. It can be used as prior
knowledge to tell which distance interval can be trusted more for making a place recognition decision.
Firstly, given a query vector, the reference vectors in the reference set within 25m (for RobotCar) are
regarded as true matches and the remaining vectors are false matches. Secondly, L2 distance is cal-
culated from a pair of vectors consisting of a query vector and a reference vector. Thirdly, traversing

8 Cambridge Authors

the whole query set, we get L2 distances of all the true matched pairs and the false matched pairs.
Lastly, L2 distances of the true matched pairs and false matches are formed as true matched and false
matches histogram distributions respectively. Intuitively, a small overlap of two distributions indicates
good discrimination.

4.3. Baseline and Our Method

NetVLAD [2] is a popular method trained on Pitts30k. We choose the best model by evaluating the
method on the Pitts30k-valid. After training, we compress the descriptor dimension to 4096 with PCA
and whitening. In our experiments, we use four tuples (one query, one positive, one negative) for train-
ing, for the purpose of reducing computational resource usage. SFRS [11] is the SOTA method which
is also trained on Pitts30k with same network architecture as NetVLAD. The best model is obtained
similarly as NetVLAD. NetVLAD_VGG16 and SFRS_VGG16 are the backbones of the Pitts30k-
trained NetVLAD and SFRS rescpectively, and outputs the descriptors with 512 × (1

16𝐻) × (1
16𝐻)

dimensions. AlexNet [20] is of the matconvnet version pre-trained in ImageNet, with the descriptor of
256 × (1

16𝐻 − 2) × (1
16𝐻 − 2) dimensions.

NetVLAD_VGG16+OursV is composed of NetVLAD_VGG16 and the CAE introduced in Section
3.2. Similarly, SFRS_VGG16+OursV includes SFRS_VGG16 and our CAE. AlexNet+OursA con-
sists of AlexNet and our CAE.

Table 2. Comparison of different settings of convolutional kernels of CAE in terms of R@1. 𝑑1, 𝑑2 and
𝑑3 represent the number of channels of the three encoder blocks. c1 and c2 are different settings (kernel
sizes and strides) of the encoder module where c1 would cause lower spatial dimension of the encoder
output, c2 does the opposite. This experiment is conducted on RobotCar (dbNight vs. qSnow)..

Method 𝒅1 𝒅2 𝒅3 c1 c2 Output Dimension R@1
oursA 128 128 256 ✓ × 8192 0.739

256 256 256 ✓ × 8192 0.742
512 256 256 ✓ × 8192 0.755
512 512 256 ✓ × 8192 0.734
512 1024 256 ✓ × 8192 0.738
256 256 12 × ✓ 8448 0.549
512 256 12 × ✓ 8448 0.559
512 512 12 × ✓ 8448 0.508
512 1024 12 × ✓ 8448 0.527

oursV 128 128 256 ✓ × 8192 0.860
256 256 256 ✓ × 8192 0.869
512 256 256 ✓ × 8192 0.872
512 512 256 ✓ × 8192 0.879
512 1024 256 ✓ × 8192 0.879
256 256 10 × ✓ 8160 0.806
512 256 10 × ✓ 8160 0.804
512 512 10 × ✓ 8160 0.809
512 1024 10 × ✓ 8160 0.832

4.4. Implementation Details

In the experiments, the resolution of the input image is 640 × 480. For VGG16, the local feature map
has a dimension of 614,400. For AlexNet, the dimension is 272,384. The hyperparameters of our CAE

Robotica 9

are optimized empirically by experiments conducted in RobotCar (dbNight vs. qSnow). The results are
shown in Table 2 where 𝑑1, 𝑑2 and 𝑑3 represent the number of channels of the three encoder blocks,
c1 and c2 imply the different settings (kernel sizes and strides) of the encoder blocks. Specifically, c1
adopts the original setting as mentioned in Sec. 3.2 and c2 indicates that the kernel size is 3× 3 and the
stride is 1. Here, c1 would cause lower spatial dimension of the encoder output, c2 does the opposite.
For a balance of effectiveness and computation resource, 𝑑1 and 𝑑2 are set to 128, and c1 is adopted.

During the CAE training, the backbone CNN is frozen. The Adam optimization algorithm is used to
learn the model parameters, with a learning rate of 0.001 and a batch size of 128. The model is trained
for 50 epochs. All the training is executed in PyTorch with 4 TITAN XP.

5. RESULTS AND DISCUSSION

5.1. Effectiveness and Stability

We first compare the performance of our method representative CNN-based image descriptors, namely,
NetVLAD, SFRS and those from VGG16 and AlexNet. In Table 3, we can observe that NetVLAD and
SFRS perform better on RobotCar than on Nordland and UACampus. VGG16 (the backbone of NetVlad
and SFRS) shows quite different results in this test. On Nordland, SFRS_VGG16 surpasses SFRS by a
significant margin with an AP of 0.969 versus 0.465 and recall@1 of 0.889 versus 0.282. Nevertheless,
it is slightly worse with a recall@1 of 0.772 versus 0.834 on RobotCar (dbNight vs. qAutumn). This
result could be attributed to the training bias introduced by the Pitts30k dataset, which is also an urban
dataset similar to RobotCar. For VGG16, only conv5 and the following layer are trained. NetVLAD and
SFRS, with VGG16 as their backbone, include a deep-learning-based VLAD module. Furthermore, the
deep-learning-based VLAD module is optimized in the clustering space of the training datasets.

Compared to NetVLAD and NetVLAD_VGG16, OursV achieves better results with a higher AP,
with the output dimension set to 4096 for a fair comparison. Even on a dataset with large appearance
changes, such as RobotCar (dbNight vs. qSnow), the recall@1 of NetVLAD_VGG16+OursV is 0.861
versus NetVLAD’s 0.691 and NetVLAD_VGG16’s 0.523. It is worth noting that our method is unsu-
pervised in this experiment on RobotCar, and it can nonetheless perform well in a non-urban dataset
like Nordland and UACampus. To further validate the effectiveness and generalization ability of our
method, we conduct experiments with different feature extractors, such as AlexNet pre-trained on Ima-
geNet. AlexNet+OursA, which is also of dimension 4096, always produces better results than AlexNet,
with an AP of 0.950 versus 0.657 in RobotCar (dbNight vs. qSnow) and recall@1 of 0.984 versus 0.956
in Nordland.

As shown in Table 3, our CAE is effective and memory-efficient on all datasets, and outperforms
NetVLAD and SFRS and their backbones in most tests. Furthermore, at the dimension of 4096, the
dimension of our descriptor is two orders of magnitude smaller than VGG16’s 614,400 and AlexNet’s
272,384.

5.2. Comparison of Encoded Dimensions

In this section, we will present the results from our study of the relationship between the output
dimension of our CAE and matching performance. Fig. 5 shows the AP results in different datasets
with the variation of the encoded dimensions. As shown in the left sub-figure, SFRS_VGG16+OursV
and AlexNet+OursA achieve similar results to AlexNet. However, the output dimension of AlexNet is
272,384. Although the performance of both methods is a bit worse than AlexNet when the dimensions
are small, e.g., 512 or 256, they still achieve better results than SFRS and SFRS_VGG16 with a moderate
dimension.

From the right sub-figure, we can observe that, even in the urban-scale RobotCar dataset (dbNight
vs. qSnow), OursV and OursA can achieve the same results as SFRS when the dimension is higher

10 Cambridge Authors

Table 3. Comparison of the baselines and our methods in terms of average precision (AP) and recall@1,
5, 10..

Dataset Method AP R@1 R@5 R@10

Nordland

NetVLAD (4096d) 0.402 0.273 0.473 0.576
NetVLAD_VGG16 (614,400d) 0.815 0.634 0.819 0.864

NetVLAD_VGG16+OursV (4096d) 0.979 0.946 0.990 0.997
SFRS (4096d) 0.465 0.282 0.522 0.630

SFRS_VGG16 (614,400d) 0.969 0.889 0.970 0.988
SFRS_VGG16+OursV (4096d) 0.979 0.946 0.990 0.997

AlexNet (272,384d) 0.975 0.929 0.982 0.989
AlexNet+OursA (4096d) 0.984 0.962 0.996 0.999

UACampus

NetVLAD (4096d) 0.744 0.674 0.788 0.838
NetVLAD_VGG16 (614,400d) 0.996 0.934 0.971 0.986

NetVLAD_VGG16+OursV (4096d) 0.999 0.969 0.992 0.995
SFRS (4096d) 0.930 0.838 0.924 0.949

SFRS_VGG16 (614,400d) 0.999 0.985 0.995 0.997
SFRS_VGG16+OursV (4096d) 0.999 0.972 0.995 0.998

AlexNet (272,384d) 0.993 0.932 0.978 0.985
AlexNet+OursA (4096d) 0.999 0.977 0.994 0.995

RobotCar
(dbNight vs. qAutumn)

NetVLAD (4096d) 0.933 0.759 0.874 0.914
NetVLAD_VGG16 (614,400d) 0.865 0.644 0.719 0.754

NetVLAD_VGG16+OursV (4096d) 0.987 0.881 0.913 0.928
SFRS (4096d) 0.968 0.834 0.914 0.940

SFRS_VGG16 (614,400d) 0.969 0.772 0.840 0.867
SFRS_VGG16+OursV (4096d) 0.985 0.873 0.918 0.932

AlexNet (272,384d) 0.916 0.741 0.801 0.845
AlexNet+OursA (4096d) 0.952 0.832 0.884 0.903

RobotCar
(dbNight vs. qSnow)

NetVLAD (4096d) 0.893 0.691 0.816 0.849
NetVLAD_VGG16 (614,400d) 0.810 0.523 0.584 0.635

NetVLAD_VGG16+OursV (4096d) 0.975 0.861 0.891 0.907
SFRS (4096d) 0.943 0.726 0.831 0.874

SFRS_VGG16 (614,400d) 0.944 0.738 0.814 0.849
SFRS_VGG16+OursV (4096d) 0.981 0.836 0.891 0.913

AlexNet (272,384d) 0.650 0.453 0.533 0.588
AlexNet+OursA (4096d) 0.950 0.730 0.797 0.825

RobotCar
(dbSunCloud vs. qSnow)

NetVLAD (4096d) 0.991 0.877 0.911 0.934
NetVLAD_VGG16 (614,400d) 0.943 0.776 0.830 0.860

NetVLAD_VGG16+OursV (4096d) 0.995 0.919 0.941 0.952
SFRS (4096d) 0.992 0.903 0.939 0.956

SFRS_VGG16 (614,400d) 0.990 0.889 0.923 0.942
SFRS_VGG16+OursV (4096d) 0.993 0.910 0.936 0.948

AlexNet (272,384d) 0.946 0.804 0.905 0.916
AlexNet+OursA (4096d) 0.989 0.868 0.932 0.947

RobotCar
(dbSunCloud vs. qAutumn)

NetVLAD (4096d) 0.996 0.928 0.956 0.965
NetVLAD_VGG16 (614,400d) 0.972 0.820 0.879 0.906

NetVLAD_VGG16+OursV (4096d) 0.996 0.930 0.962 0.971
SFRS (4096d) 0.999 0.958 0.979 0.984

SFRS_VGG16 (614,400d) 0.989 0.851 0.895 0.917
SFRS_VGG16+OursV (4096d) 0.990 0.895 0.936 0.948

AlexNet (272,384d) 0.991 0.899 0.932 0.948
AlexNet+OursA (4096d) 0.992 0.909 0.931 0.945

Robotica 11

Figure 5. Comparison of the baselines and our methods with different dimensions of our image descrip-
tor in terms of AP on the Nordland and RobotCar (dbNight vs. qSnow). SFRS-4096d(AP=0.465) means
that SFRS with 4096 dimensions output can achieve AP of 0.465, and others are similar indications.
In the Nordland of the left picture, our method can achieve an AP of 0.97 with 1024d. In the Robot-
Car (dbNight vs. qSnow) of the right picture, SFRS_VGG16+OursV with just 1024d can approximately
attain an AP of 0.96 as well as NetVLAD. While the dimension of SFRS is 4096..

than 1024. From the above observation, we can infer that our CAE can attain high performance with
low dimensions. However, as we continue to reduce the descriptor dimension, the performance will
deteriorate.

5.3. Discriminative Capacity

We also plot the distribution of L2 distances between true matches and false matches, to evaluate the
discriminating power of our CAE. For a fair comparison, we set the dimension of SFRS_VGG16+OursV
as 4096, the same as SFRS. From Fig. 6(a), we can observe that the overlapping area of OursV is
smaller than that of SFRS with a mean gap value of 0.322 versus 0.121. As shown in Fig. 6(b), the
distributions of L2-distances between the true matches and false matches of SFRS are close where half
of the true matches overlap with the false matches, resulting in a low mean gap value of 0.087. For
SFRS_VGG16+OursV, the gap is 0.151, and half of the true matches do not overlap with the false ones.

These results show that our CAE is more discriminative than NetVLAD. However, the distributions
of L2-distances between the true and false matches still overlap considerably. This could be caused by the
fact that Nordland consists of only train road views, while RobotCar is more complicated with dynamic
objects.

5.4. Ability of False Positives Avoidance

As mentioned in [23], false positive matches are fatal to VPR, since false matches lead to incorrect
input to robot pose trajectory optimization. Consequently, recall at 100% precision is the prime metric
for many tasks. From the result of the Nordland dataset shown in Fig. 7(a), SFRS_VGG16+OursV
surpasses SFRS in terms of recall at 100% precision, while AlexNet+OursA performs poorly in this
test. However, as shown in Fig. 7(b) of a RobotCar (dbNight vs. qSnow) experiment, AlexNet+OursA
and SFRS_VGG16+OursV perform significantly better than other baselines.

12 Cambridge Authors

0.121 0.322

(a) Nordland

0.019 0.151

(b) Robotcar(dbNight vs. qSnow)

Figure 6. L2 distribution of true and false matches for different methods. In both datasets,
SFRS_VGG16+OursV (4096d) surpass SFRS a lot with difference of mean value of 0.322 versus 0.121
in Nordland and 0.151 versus 0.019 in RobotCar (dbNight vs. qSnow)..

5.5. Failure Cases Analysis

Some true positive and false positive examples are shown in Fig. 8. From the left image pair, we can
observe that a similar structure is a key to recognizing the same place. However, this might lead to a
failure in the environments where similar structures widely exist, e.g., the environment shown in the
middle image pair. In this wrongly matching pair, the tree distributions are similar, which is the reason
for the recognition by our algorithm. However, these two places are not the same place. The right pair
is also a failure case where dynamic objects occupy most of the image region. In this situation, our
method would fail because not much discriminative information is captured. As the analysis of the above
example, we conclude that loop closure verification is necessary for further accurate place recognition.
In the verification, the local descriptors matching should have abilities of meaningless regions exclusion
(e.g. dynamic objects in RobotCar) and adaptive attention on discriminative objects (e.g. trail direction
in Nordland).

6. CONCLUSION

In this paper, we propose a simple method that uses a CAE in constructing an image descriptor from
image feature maps from by a CNN. The experimental results have shown that the compressed CNN-
descriptor by the CAE can attain high performance, better than state-of-the-art image descriptors such

Robotica 13

(a) Nordland (b) Robotcar(dbNight vs. qSnow)

Figure 7. Precision-Recall Curves for Nordland and Robotcar (dbNight vs. qSnow) datasets. The pro-
posed method consistently outperforms better than the baselines with the metric of recall at 100%
precision. In Nordland, OursV is the best with almost 0.2 recall at 100% precision. In Robotcar (dbNight
vs. qSnow), SFRS_VGG16+OursV can attain nearly 0.7 recall at 100% precision..

Figure 8. The top row is query images and the below row is matching images. From left to right, they
are true match, false match and false match..

as NetVLAD, SFRS and than CNN-based descriptors at much higher dimensions such as VGG16 and
AlexNet. Specifically, our CAE can consistently achieve a higher AP and recall than SFRS, when using
the same descriptor dimension; in addition, our CAE achieves comparable results to other baseline
descriptors when using a lower dimension than these descriptors. In RobotCar (dbNight vs. qSnow),
OursV can achieve top-1 recall of 0.861 with 4096 dimensions, outperforming NetVLAD and SFRS.
Furthermore, from the system perspective, our CAE can achieve higher recall at 100% precision than
others. These quantitative results indicate that dimension reduction by our CAE can produce a compact
and condition-invariant global descriptor while reducing the computational cost.

DECLARATION

• A preprint of an old version of this paper is available at https://arxiv.org/pdf/2204.07350.pdf.
• This work was supported in part by the Leading Talents Program of Guangdong Province under

Grant No. 2019QN01X761 and the National Nature Science Foundation of China (62103179)

https://arxiv.org/pdf/2204.07350.pdf

14 Cambridge Authors

• No Conflict of interest/Competing interests (check journal-specific guidelines for which heading to
use)

• Ethics approval
• Consent to participate
• Consent for publication
• No availability of data and materials
• No code availability
• Hanjing Ye raised the main idea and completed the experiments and the draft. Weinan Chen helps

with code work and idea revising. Jingwen Yu provided help with code work. Li He, Yisheng Guan
and Hong Zhang shared their suggestions for revising the idea in this paper.

References

[1] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina keypoint. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition 2012, pp. 510–517. IEEE.

[2] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. Netvlad: Cnn architecture for weakly
supervised place recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition 2016, pp. 5297–5307.

[3] R. Arandjelovic and A. Zisserman. All about vlad. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition 2013, pp. 1578–1585.

[4] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
(2016).

[5] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky. Neural codes for image retrieval. In
European conference on computer vision 2014, pp. 584–599. Springer.

[6] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (surf). Computer vision
and image understanding„ 110(3), 346–359 (2008).

[7] Z. Chen, F. Maffra, I. Sa, and M. Chli. Only look once, mining distinctive landmarks from convnet
for visual place recognition. in 2017 ieee. In RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 9–16.

[8] J. Cheng, C. Wang, and M. Q.-H. Meng. Robust visual localization in dynamic environments based
on sparse motion removal. IEEE Transactions on Automation Science and Engineering„ 17(2), 658–
669 (2019).

[9] J. Cheng, H. Zhang, and M. Q.-H. Meng. Improving visual localization accuracy in dynamic
environments based on dynamic region removal. IEEE Transactions on Automation Science and
Engineering„ 17(3), 1585–1596 (2020).

[10] Z. Dai, X. Huang, W. Chen, C. Chen, L. He, S. Wen, and H. Zhang. Keypoint description by
descriptor fusion using autoencoders. In 2020 IEEE International Conference on Robotics and
Automation (ICRA) 2020, pp. 65–71. IEEE.

[11] Y. Ge, H. Wang, F. Zhu, R. Zhao, and H. Li. Self-supervising fine-grained region similarities
for large-scale image localization. In European conference on computer vision 2020, pp. 369–386.
Springer.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition 2014, pp. 580–587.

[13] A. Gordo, J. Almazán, J. Revaud, and D. Larlus. Deep image retrieval: Learning global rep-
resentations for image search. In European conference on computer vision 2016, pp. 241–257.
Springer.

Robotica 15

[14] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the IEEE international conference on computer
vision 2015, pp. 1026–1034.

[15] Y. Hou, H. Zhang, and S. Zhou. Convolutional neural network-based image representation for
visual loop closure detection. In 2015 IEEE international conference on information and automation
2015, pp. 2238–2245. IEEE.

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning 2015, pp. 448–456. PMLR.

[17] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition
2017, pp. 1125–1134.

[18] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a compact
image representation. In 2010 IEEE computer society conference on computer vision and pattern
recognition 2010, pp. 3304–3311. IEEE.

[19] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid. Aggregating local image
descriptors into compact codes. IEEE transactions on pattern analysis and machine intelligence„
34(9), 1704–1716 (2011).

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems„ 25, 1097–1105 (2012).

[21] Y. Liu, R. Feng, and H. Zhang. Keypoint matching by outlier pruning with consensus constraint.
In 2015 IEEE International Conference on Robotics and Automation (ICRA) 2015, pp. 5481–5486.
IEEE.

[22] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International journal of
computer vision„ 60(2), 91–110 (2004).

[23] S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke, and M. J. Milford. Visual
place recognition: A survey. IEEE Transactions on Robotics„ 32(1), 1–19 (2015).

[24] W. Maddern, G. Pascoe, C. Linegar, and P. Newman. 1 year, 1000 km: The oxford robotcar dataset.
The International Journal of Robotics Research„ 36(1), 3–15 (2017).

[25] X.-J. Mao, C. Shen, and Y.-B. Yang. Image restoration using convolutional auto-encoders with
symmetric skip connections. arXiv preprint arXiv:1606.08921, (2016).

[26] N. Merrill and G. Huang. Lightweight unsupervised deep loop closure. In Proc. of Robotics:
Science and Systems (RSS) 2018, Pittsburgh, PA.

[27] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, (2014).

[28] D. Olid, J. M. Fácil, and J. Civera. Single-view place recognition under seasonal changes. In
PPNIV Workshop at IROS 2018 2018.

[29] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies
and fast spatial matching. In 2007 IEEE conference on computer vision and pattern recognition 2007,
pp. 1–8. IEEE.

[30] F. Radenović, G. Tolias, and O. Chum. Fine-tuning cnn image retrieval with no human annotation.
IEEE transactions on pattern analysis and machine intelligence„ 41(7), 1655–1668 (2018).

[31] A. S. Razavian, J. Sullivan, S. Carlsson, and A. Maki. Visual instance retrieval with deep con-
volutional networks. ITE Transactions on Media Technology and Applications„ 4(3), 251–258
(2016).

[32] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted
intervention 2015, pp. 234–241. Springer.

[33] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative to sift or surf. In
2011 International conference on computer vision 2011, pp. 2564–2571. IEEE.

16 Cambridge Authors

[34] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf: an
astounding baseline for recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition workshops 2014, pp. 806–813.

[35] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings 2015.

[36] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos.
In Computer Vision, IEEE International Conference on 2003, volume 3, pp. 1470–1470. IEEE
Computer Society.

[37] N. Sünderhauf, S. Shirazi, F. Dayoub, B. Upcroft, and M. Milford. On the performance of convnet
features for place recognition. In 2015 IEEE/RSJ international conference on intelligent robots and
systems (IROS) 2015, pp. 4297–4304. IEEE.

[38] G. Tolias, R. Sicre, and H. Jégou. Particular object retrieval with integral max-pooling of cnn
activations. In ICLR 2016-International Conference on Learning Representations 2016, pp. 1–12.

[39] M. Vankadari, S. Garg, A. Majumder, S. Kumar, and A. Behera. Unsupervised monocular
depth estimation for night-time images using adversarial domain feature adaptation. In European
Conference on Computer Vision 2020, pp. 443–459. Springer.

[40] Y.-T. Wang and G.-Y. Lin. Improvement of speeded-up robust features for robot visual simultaneous
localization and mapping. Robotica„ 32(4), 533–549 (2014).

	Condition-Invariant and Compact Visual Place Description by Convolutional Autoencoder
	Introduction
	RELATED WORK
	Visual Place Recognition
	Convolutional Autoencoder

	APPROACH
	Feature Extraction
	Convolutional Autoencoder

	EXPERIMENTS SETUP
	Dataset
	Evaluation Metric
	Baseline and Our Method
	Implementation Details

	RESULTS AND DISCUSSION
	Effectiveness and Stability
	Comparison of Encoded Dimensions
	Discriminative Capacity
	Ability of False Positives Avoidance
	Failure Cases Analysis

	CONCLUSION

