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Abstract— Robot person following (RPF) is a crucial capa-
bility in human-robot interaction (HRI) applications, allowing
a robot to persistently follow a designated person. In practical
RPF scenarios, the person often be occluded by other objects or
people. Consequently, it is necessary to re-identify the person
when he/she re-appears within the robot’s field of view. Previous
person re-identification (ReID) approaches to person following
rely on offline-trained features and short-term experiences.
Such an approach i) has a limited capacity to generalize across
scenarios; and ii) often fails to re-identify the person when his
re-appearance is out of the learned domain represented by the
short-term experiences. Based on this observation, in this work,
we propose a ReID framework for RPF that leverages long-term
experiences. The experiences are maintained by a loss-guided
keyframe selection strategy, to enable online continual learning
of the appearance model. Our experiments demonstrate that
even in the presence of severe appearance changes and distrac-
tions from visually similar people, the proposed method can still
re-identify the person more accurately than the state-of-the-art
methods.

I. INTRODUCTION
Robot person following (RPF) [1] serves as an essential

function in many HRI applications, enabling a robot to follow
a specified person autonomously. However, the person being
followed may become occluded in various situations, such
as when other objects or people obstruct the view of the
robot in the working environment. Therefore, it is crucial to
re-identify the person when he re-appears in the view.

Existing RPF systems can be achieved through two steps:
identify and follow. In the identify step, the system performs
tracking and possibly ReID to locate the target person,
while the follow step involves planning and executing the
control of the robot to maintain the desired relative position
with the target person. In this paper, we focus on the
ReID aspect, specifically re-identifying the target person
after occlusion. Existing ReID methods for RPF describe
a person’s appearance either with hand-crafted features [2]–
[4], or with learned features [5]. However, these methods
may experience poor generalization when the features are
not sufficiently discriminative for re-identifying the person.
Some methods [6]–[8] update the tracker online with newly
acquired observations of the target person to distinguish the
person from the background and other distracting individuals.
Such solutions usually do not consider the appearance model
of a person explicitly, leading to suboptimal ReID perfor-
mance. In addition, all methods mentioned above learn from
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Code and video are available at https://sites.google.com/view/oclrpf.

Fig. 1. Robot person following with online continual learning. In this end,
long-term experiences are utilized to learn a complete and discriminative
appearance model of the target person.

short-term experiences only, i.e., the most recently observed
samples. This results in limited discriminative ability when
the re-appearance of the target person is out of the learned
domain represented by the short-term experiences.

To solve the above problems, we propose to utilize long-
term experiences to model the target person’s appearance.
Specifically, we approach the person ReID in RPF as a
problem of online continual learning (OCL) [9], which aims
to learn the newest knowledge without forgetting long-
term experiences using a size-limited long-term memory.
This idea has shown promising results in existing works
on dense mapping [10] and place recognition [11]. For
example, IMap [10] incrementally learns a NeRF-based
dense map by replaying images and poses from a sparse
keyframe set, where camera poses are estimated through
the tracking process. Similarly, BioSLAM [11] constructs a
discriminative long-term memory to replay point clouds and
positions for learning a life-long place recognition network,
where positions are obtained via LiDAR odometry.

To construct a ReID framework for RPF that leverages the
long-term experiences, we first construct a long-term mem-
ory to store valuable historical samples, which are selected
by a loss-guided keyframe selection strategy. These long-
term samples, together with the most recent samples, are
utilized to optimize ReID features. As a result, the features
can capture the current knowledge about the target person
without forgetting historical experiences. Furthermore, these
features are utilized to learn a ridge-regression-based classi-
fier for the recognition of the target person. Lastly, a ReID
lifecycle management is implemented to form a complete
ReID solution, which we refer to as OCLReID. In our
experiments, the RPF system with OCLReID can reliably re-
identify and follow the target person even in situations with
visually similar distracting people and different appearances
after occlusion.

https://sites.google.com/view/oclrpf


II. RELATED WORK

A. Person ReID in Robot Person Following

Person ReID is crucial for RPF, which helps re-identify
the target person after occlusion. Existing ReID methods in
RPF usually describe the appearance of the target person
with hand-crafted features [2]–[4] or learned features [5].
Examples of hand-crafted features include color histograms
[2], geometric attributes [3], and characteristics like height,
gait and clothing color [4]. Alternatively, ReID can rely on
features learned from a ReID dataset. For example, [5] trains
a convolutional neural network (CNN) with a ReID dataset
and then extracts CNN features from detected people when
performing RPF. Often, these features are further utilized to
construct a target classifier with the most recent observed
samples, i.e., short-term experiences.

The above methods, however, often fail to re-identify the
person in complicated RPF situations because hand-crafted
or learned features have a limited capacity to generalize
across scenarios. Besides, short-term experiences contain less
information for the recognition of the target person compared
to the long-term experiences. Given the fact that long-
term experiences contain rich knowledge for re-identifying
the person, we propose to utilize long-term experiences to
optimize ReID features.

B. Person ReID in Computer Vision

Person ReID has been a prominent research area in
computer vision, with the main objective of identifying indi-
viduals in video surveillance systems [12]. Various methods
have been proposed to solve the ReID problem. For instance,
[13] introduces a hand-crafted feature that combines eight
color channels (RGB, HSV, and YCbCr) and 19 texture
channels to achieve viewpoint invariance. Another approach
[14] involves using attribute-based features to achieve com-
petitive ReID performance. However, in recent years, with
the advancement of deep learning techniques, learned fea-
tures [15] have become dominant in ReID research due to
their end-to-end nature and excellent generalization. Notably,
[16] proposes a CNN-based ReID method that effectively
models complex photometric and geometric transformations.
However, ReID with a global CNN feature can introduce dis-
tractive information in case of occlusion, posing a challenge
in real-world scenarios.

To address the issue of occlusion, researchers have intro-
duced ReID methods [17], [18] that leverage pre-defined or
learned part masks to match features defined with respect to
parts of a target person. Considering that an occluded human
body is frequently encountered in RPF scenarios, one can use
part-guided ReID features to describe a person’s appearance.
Still, as mentioned before, these offline-learned features
have a limited generalization ability across scenarios. To
achieve generalization, we propose in this paper to learn
these features incrementally within the OCL framework.

C. Online Continual Learning

OCL addresses the challenge of learning from a non-
independent and identically distributed (Non-IID) stream of

data in an online manner, with the objective of preserving and
extending historical knowledge [9]. The Non-IID data setting
aligns with the observation scenario of our RPF system, in
which the appearance of an observed individual significantly
varies due to complex backgrounds and the motion of the
robot and target.

Recent works in OCL can be categorized into three main
families: regularization-based, parameter-isolation-based and
memory-replay-based methods. Regularization-based meth-
ods [19]–[21] preserve knowledge by adding history-related
constraints to the loss function during current task training,
thereby balancing the loss gradient direction for old and
new knowledge. However, these methods face challenges
in finding the desired global optima, making it difficult to
strike a balance between both types of knowledge. Parameter-
isolation-based methods [22], [23] retain old knowledge by
freezing the related parts of the model and only allowing
the remaining parts to learn new knowledge. However, these
methods are limited by the initial model capacity and re-
quire significant training time to achieve good performance.
Memory-replay-based methods [24]–[27] utilize memory
replays to incrementally learn old knowledge. Examples
include Reservoir [27], which randomly forgets samples
based on a distribution related to observation times, MIR
[24], which randomly updates the memory and retrieves “the
hardest” samples for model updating, and ASER [25], which
utilizes an Adversarial Shapley value scoring method for
memory retrieval to preserve latent decision boundaries for
previously observed samples.

Recently, the benefits of memory-replay-based OCL have
been demonstrated in several works [10], [11], [28] to
enhance the perception ability of robot systems. We therefore
adopt a memory-replay-based algorithm in the implemen-
tation of our RPF system, although our solution is not
limited to any particular OCL algorithm. To the best of our
knowledge, we are the first to integrate the OCL concept
into an RPF system to incrementally learn ReID features
from long-term experiences.

III. METHOD

A. Problem Statement and Overview

Our RPF system is an extension of our previous work
[29], represented by the top half of Fig. 2. Our previous RPF
system allows for accurate tracking of individuals, even in
scenarios with partial occlusion. It first tracks multiple people
and then identifies the target person to follow by selecting the
corresponding identity (ID). However, when the target person
undergoes occlusion and disappears from the camera view,
his ID may be removed because no observation is associated
with the ID. Therefore, re-identifying the target person after
occlusion, either momentary or long-term, becomes crucial.
To solve this problem in our current work, we introduce a
person ReID process, which is performed by the module in
the lower half of Fig. 2. Specifically, the ReID module learns
an appearance model of the target person when he can be
correctly identified from tracked people. Later, if and when a
long-time occlusion occurs, this appearance model is utilized
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Fig. 2. The top part is the pipeline of our RPF system and the bottom part is the proposed person ReID framework. We obtain image patches {M}i
of the tracked people using the current image I and their bounding boxes {B}i. When the target person is consistently tracked, his label y represents
positives and other people are negatives. Afterward, we add {M,y}i to the memory manager for memorization. Additionally, these patches are fed into
the feature extractor to extract ReID features. These features are utilized by the target classifier to estimate the target confidence. If the target confidence is
greater than a threshold, the corresponding position p is designated as the target position. In addition to the inference above process, the memory manager
simultaneously replays long-term and short-term experiences to train the feature extractor and the target classifier, respectively. If the target person is not
found among the tracked individuals, the training process pauses, and all observations {M,y}i become candidates for re-identification. The above training
and inference processes are managed by the ReID lifecycle.

to re-identify the target person among all the tracked people.
In our work, this appearance model comprises the feature
extractor and the target classifier.

In each ReID period, we capture image patches {M}i
of the tracked individuals using the current image I and
their corresponding bounding boxes {B}i. When the target
person is consistently tracked, his label y represents an
positive sample, while labels for other people are negatives.
Subsequently, these patches {M}i are fed into the feature
extractor for extracting ReID features (Sec. III-B) and these
features are further utilized by the target classifier to estimate
the target confidence (Sec. III-C). If the target confidence
is greater than a threshold, the corresponding position p is
designated as the target position.

In addition to the inference process mentioned above, we
add {M,y}i to the memory manager (Sec. III-D) for per-
forming memory-replay-based OCL. Specifically, as shown
in Fig. 3, the feature extractor is incrementally optimized
with long-term experiences (mlt ∪mst) in an OCL manner
through Eq. 1. Besides, the target classifier is learned with
short-term experiences mst through Eq. 2. If the target person
is not found among the tracked people, the training process
pauses, and all observations {M,y}i become candidates for
re-identification. Above training and inference processes are
managed by the ReID lifecycle, which is explained in detail
in Algorithm 1.

B. Feature Extractor

First, we extract ReID features for the tracked people
with a feature extractor. Given an image I and a person’s
bounding box B, we extract his image patch, denoted as M.
Subsequently, we learn a feature extractor f by a standard
CNN, which extracts local features from M. To represent
partially visible human bodies, we further transform these
local features into features associated with the body parts
[17]. These features are denoted as F ∈ RN×C , where
N represents the number of body parts and C is the size
of feature dimension. In previous RPF works [3]–[5], the
feature extractor is learned offline and fixed, under the
assumption of independent and identically distributed (IID)
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Fig. 3. Long-term experiences, responsible for training the feature extrac-
tor, consist of short-term samples mst and long-term samples mlt, with mlt

being sampled from the long-term memory L. This memory contains sparse
yet valuable historical samples, maintained by the memory manager. Short-
term experiences mst, used for learning the target classifier, are sampled
from the short-term memory S. This memory stores the most recent observed
samples, representing the latest knowledge.

observations. However, this assumption may not be valid in
an application such as our RPF. For instance, it may not hold
when the target person’s appearance is non-discriminative
in the pre-defined feature space, or when re-appearance of
the target person is different from the appearance model
learned from short-term experiences. These two problems
are commonly referred to as distribution drift [9].

To address these problems, we adopt the concept of OCL
[9]. Instead of utilizing a fixed feature extractor, we continu-
ally update the feature extractor with long-term experiences.
Due to the requirement of efficient learning, OCL demands
that the model is trained with only one limited batch at
a time, and other batches are not included. In addition,
OCL requires that the batch should contain current and
historical samples. Therefore, we typically maintain a long-
term memory, denoted as L, to store a subset of historical
samples. In every ReID period, L replays only one batch,
denoted as mlt ⊂ L. Besides, the most recent observed K
samples, denoted as mst, are included to represent the current
knowledge. Our OCL formulation thus can be represented as
follows:

arg min
θf

∑
(M,y)∈{mst∪mlt}

E(M,y)[LF (f(M; θf ),y)] (1)



(a) Original (b) OCL (c) Hard Training

Fig. 4. Feature distribution of the target person (positive) and other
distracting people (negative) across all observed samples at the end of
sequence. (a) Original distribution which shows that it is hard to discriminate
positives and negatives with a fixed feature extractor. (b) Distribution of
learning in an OCL manner. (c) Distribution of learning in a hard training
manner, which is the most ideal situation.

where M and y represents a person’s image patch and label,
respectively. f is the feature extractor to be learned, θf is the
parameter of f , and LF is the loss function. In this work,
inspired by [17], we apply a mixed loss, combining the cross
entropy loss and the triplet loss, for learning a representation
that is robust to occlusions.

By continually learning from these long-term experiences
(mst ∪ mlt), the feature extractor incrementally acquires
current knowledge while retaining previous experiences. This
can be demonstrated by Fig. 4, which shows that train-
ing the feature extractor in an OCL manner leads to the
target person’s features being distinguishable from others
throughout the observed samples in the sequence. This ability
of incremental learning enables the robot to re-identify the
target person if their re-appearance exists in the previous
experiences.

After feature extraction, previous works [17], [18] usually
achieve ReID by averaging the similarities of features across
all query-gallery pairs, assuming that the query feature and
the gallery features are strictly in the same feature space.
This requires one to re-extract features with the latest feature
extractor from all samples in the memory buffer. However,
for the purpose of effective RPF, this approach is not feasible
due to the large size of our long-term memory. Therefore,
to ensure efficient ReID processing, we leverage short-term
experiences to learn a classifier (Sec. III-C).

C. Target Classifier

We learn a target classifier g using short-term experiences,
denoted by mst and defined as the most recent observed
pairs of image patches and labels {M,y}. These pairs are
replayed from a short-term memory S, representing the latest
knowledge about the target person. The learning process can
thus be expressed as follows:

arg min
θg

∑
(M,y)∈mst

E(M,y)[LC(g(f(M); θg),y)] (2)

where f is the current feature extractor without optimization
during the training of the classifier g. θg is the parameter
of g, and LC is the loss function for the classifier training.
For g, we employ the ridge regression (RR) model with L2
regularization as our classifier, although any other classifiers
that are capable of efficient optimization and inference can
also be employed. Specifically, we train N RR models where
each model is represented as Wi ∈ R1×C corresponding to
a part-level classifier. The target confidence s is estimated

Algorithm 1: ReID Lifecycle of OCLReID
Input: Current image I and tracked people {B,p}i representing

bounding boxes and positions, target person’s identity id,
target confidence s, short-term memory S, long-term
memory L, feature extractor f and target classifier g

Output: Target person’s position {p}id in the current frame
1 Extract image patches M from I and B;
2 Construct the observation set {M,y}i where y = 1 if i == id,

otherwise y = 0;
3 Extract features F from M with f ;
4 if id ∈ {i} then
5 Estimate s of the target person based on Eq. 3;
6 if s > δsw then
7 Consider {̄i} as identities of negative tracks;
8 {M,y}id → L if it is a keyframe based on Eq. 5;
9 {M,y}ī → L based on FILO rule;

10 Consolidate L with OCL techniques if L is full;
11 {M,y}id → S, {M,y}ī → S based on FILO rule;
12 Sample mst and mlt from S and L, respectively;
13 Train f with mst and mlt based on Eq. 1;
14 Train g with mst based on Eq. 2;
15 Return target position {p}id;
16 else
17 Let id = −1, indicates id switch between the target

person and other people;
18 Return ø;

19 else
20 Estimate s of the ith person based on Eq. 3;
21 if s > δreid for consecutive ζreid frames then
22 Let id = i, indicates successful target person ReID;
23 Return target person’s position {p}id;
24 else
25 Return ø;

by averaging the outputs from all part-level classifiers:

s =

∑N
i=0 WiF

T
i

N
(3)

where Fi ∈ R1×C represents the ith part feature of F where
F = f̄(M). Each RR model Wi is optimized with the most
recent K features extracted from mst:

arg min
Wi

∥∥WiX
T
i − y

∥∥2
2

+ λ ‖Wi‖22 (4)

where Xi = {F1
i ,F

2
i , . . . ,F

K
i } ∈ RK×C represents the

features of the ith part. y indicates the labels and λ is
a regularization parameter. The optimal solution, which is
obtained using linear least squares, is given by W∗

i =
(XT

i Xi + λI)−1XT
i y.

This formulation can efficiently regress the classification
boundary since the sizes of both the short-term memory
and feature dimensions are small. Furthermore, it can also
generalize to distinguish historical samples, although the
classifier is trained with short-term experiences only. This
is because learned features are discriminative enough to
establish a clear classification boundary with a few samples.
This can be observed from Fig. 4 (b) and further verified in
the experiments.

D. Memory Manager

To leverage long-term experiences, we establish a long-
term memory denoted as L, responsible for storing valuable
samples, i.e., pairs of image patches and labels. When



presented with a new sample, the memory manager employs
a keyframe selection strategy to decide whether to add
this sample to the memory buffer. Once the buffer reaches
its capacity, memory consolidation takes effect to create
space by purging certain samples. In addition to the sample
insertion and removal, the process of selecting samples for
replay during model optimization (Eq. 1) is equally important
and is overseen by the memory replay mechanism. In the
following, we will introduce our keyframe selection strategy,
as well as the memory replay and consolidation processes.

1) Keyframe Selection: Adding the newest sample directly
to L may not be appropriate because the appearance of
the target person in adjacent frames is often similar, and
therefore, it may not provide additional information. Since
information in images is temporally correlated and therefore
highly redundant, we insert a keyframe to L only if it it is
informative. To this end, inspired by [10], we employ a loss-
guided keyframe selection strategy to assess the significance
of the incoming sample. Specifically, every time a new target
sample is added to L and the feature extractor is optimized,
we save a duplicate of the latest feature extractor f and
record the loss from this optimization as lt. The subsequent
sample {M,y}id will then be used to optimize the duplicated
f . If the optimization loss is larger than the previous loss lt
by a margin, this sample will be added to L. This process
can be expressed as:

δ = LF (f(M),y)− lt (5)

If δ > δl, the sample is added to L, indicating that the
forthcoming sample contributes additional information to the
learned feature extractor.

2) Memory Replay and Consolidation: To preserve valu-
able experiences, we follow the standard technique of
memory-replay in OCL to replay samples for our feature
extractor learning or consolidate the memory by remov-
ing non-informative samples. We show that, with existing
OCL techniques, we can mitigate the forgetting problem
and further help enhance person ReID ability. Specifically,
the consolidation process is triggered when L is full. For
example, it would prefer to forget non-discriminative samples
[11] or randomly selected samples based on a dynamic-
change random distribution [27].

The complete ReID lifecycle of our OCLReID framework
is summarized in Algorithm 1. The algorithm optimizes the
appearance model upon successful identification of the target
person, identification recognized when the target id exists
within the tracked individuals and the target confidence s sur-
passes the threshold δsw. When the target person is lost, the
algorithm re-identifies him from all observed individuals. An
individual is considered as the target person if his estimated
confidence has surpassed a threshold δsw for consecutive
ζreid frames.

IV. EXPERIMENTS

Through comprehensive experiments, we evaluate the
OCLReID in RPF and conduct an ablation analysis to
determine the effectiveness of different components.

Fig. 5. Examples of the custom-built dataset. It contains challenging situ-
ations of similar appearance of distracting people and different appearance
after occlusion (lower back body vs. whole front body).

A. Experimental Setup

1) Dataset: We conduct experiments on a public dataset
[6] and a custom-built dataset. Both datasets consist of image
sequences with the ground truth provided in the form of
bounding boxes around the target person. The public dataset,
named icvs, includes challenging scenarios such as quick
multi-people-crossing, illumination changes, and appearance
variations. However, this public dataset lacks scenarios that
require person ReID, such as occlusion and similar appear-
ances of distracting people (as shown in Fig. 5). To address
this limitation, we created a custom dataset that includes
these challenging scenarios. The custom dataset comprises
four sequences named corridor1, corridor2, lab-corridor,
and room.

2) Implementation Details: For all experiments, we set
the following default parameters: memory sizes |S| = 64
and |L| = 512, a batch size of 64 for each replay including
long-term and short-term relays, a regularization parameter
λ = 1.0 for RR, a keyframe selection threshold δl = 0.02, an
id switch threshold δsw = 0.35, a ReID threshold δreid = 0.7
and a number of consecutive frames ζreid = 5. In this
paper, for representing the part-level features, we define ten
parts: {front, back}×{head, torso, legs, feet, whole}. For
orientation estimation, we employ MonoLoc [35] trained
on the MEBOW dataset [36], to infer the orientation using
detected joint positions from AlphaPose [37]. These joint
positions are also utilized to estimate the visible parts. We
use ResNet18 as our feature extractor, pre-trained on the
MOT16 [38] dataset. During OCL for the ResNet18, only
the layers after conv3 are trainable (including conv3).

All evaluations are conducted on a computer with an
Intel® Core™ i9-12900K CPU and NVIDIA GeForce RTX
3090. For real robot experiments, we use a Unitree Go1
quadruped robot (see Fig. 1) with Intel NUC 11 mini PC
powered by Core i7-1165G7 CPU and NVIDIA GeForce
RTX2060-laptop GPU. A dual-fisheye Ricoh camera is
mounted on the robot, providing cropped perspective images
with a resolution of 640× 480 and a frequency of 30Hz.

3) Baselines: In our evaluation, we assess the person
ReID ability of our OCLReID framework using the same
approach as previous RPF works [5], [6], [29], where RPF
is treated as a special case of object tracking. Specifically, we
integrate the ReID module into the RPF system to evaluate
the person ReID capability by assessing the person tracking
performance of the entire RPF system. We compare our
method with popular baselines, which include both feature-
based methods and learning-based methods. The difference
between them lies in the fact that the former does not update
the feature extractor, while the latter does. In our experi-



TABLE I. Tracking mean accuracy (%) (t-mAcc) of the baseline and our method in the custom-built dataset† and the public dataset††. F represents a
feature-based method and L indicates a learning-based method. For any feature-based method, the tracking performance is always better when combining
with our OCLReID method, compared to Koide’s ReID approach [5].

Methods Type t-mAcc (%)
corridor1† corridor2† lab-corridor† room† icvs††

SiamRPN++ [30] L 44.8 55.9 46.1 42.6 93.6
STARK [31] L 44.3 83.8 73.1 65.8 96.5

SORT [32] F 42.0 20.2 29.5 58.3 40.4
SORT w/ Koide’s method [5] F + ReID 52.8 70.0 87.0 85.8 90.2
SORT w/ Our OCLReID F + ReID 92.8 95.6 92.7 96.8 96.8

OC-SORT [33] F 42.0 20.2 29.5 58.3 56.6
OC-SORT w/ Koide’s method [5] F + ReID 50.4 74.6 79.5 31.7 91.6
OC-SORT w/ Our OCLReID F + ReID 92.8 95.3 92.9 96.8 96.7

ByteTrack [34] F 42.0 20.2 29.5 58.3 88.6
ByteTrack w/ Koide’s method [5] F + ReID 48.3 67.7 68.3 60.2 92.0
ByteTrack w/ Our OCLReID F + ReID 93.5 94.9 96.0 96.8 97.0

ments, we compare our approach against SORT [32], OC-
SORT [33], and ByteTrack [34] as feature-based methods,
and SiamRPN++ [30] and STARK [31] as learning-based
methods. As in previous RPF works [5], [6], [29], where
a feature-based method and a ReID module are combined
to create a complete RPF system, we integrate Koide’s
ReID module [5] and our OCLReID module into the same
feature-based methods, respectively, to evaluate their ReID
capability. To investigate the impact of different methods
of memory consolidation (as illustrated in Sec. III-D) on
person ReID ability, we conduct experiments involving three
methods: BioSLAM [11], MIR [39], and Reservoir [27].
These methods are employed to assess whether any form
of memory consolidation can enhance the performance of
person ReID.

B. Person Tracking Evaluation

1) Metric: The evaluation metrics of person tracking rely
on those employed in previous RPF studies [5], [6], [29].
We assess tracking performance in the image space using the
tracking mean accuracy (t-mAcc) as the evaluation metric,
which is defined as follows:

t-mAcc =
1

N

N∑
i=0

ai (6)

where N represents the number of frames within a sequence
and ai is a binary indicator. It equals 1 if the distance
between the recognized and ground-truth bounding boxes is
less than 50 pixels, and 0 otherwise.

2) Experimental Results: The results are shown in Table
I. We observe that with any feature-based method, our
OCLReID can achieve the highest tracking accuracy on all
sequences compared to other baselines. Specifically, when
utilizing ByteTrack [34], the RPF system with our OCLReID
surpasses the second-best method by 45.2% on corridor1,
12.7% on corridor2, 20.0% on lab-corridor, 31.3% on room
and 0.5% on icvs. Furthermore, compared to Koide’s ReID
method [5], our OCLReID can achieve a better improvement
of tracking performance on all sequences independently of
which RPF method is used. For instance, when combined

TABLE II. Ablation study on corridor2 and lab-corridor in terms of ReID
mean accuracy at the end of training (r-mEAcc) (%) and the tracking mean
accuracy (t-mAcc) (%). The number in the brace represents the counts of
sample insertion to the long-term memory buffer. All r-mEAcc values are
averages of three runs.

Methods corridor2 lab-corridor
r-mEAcc ↑ t-mAcc ↑ r-mEAcc t-mAcc

w/o long-term replay 59.2 ± 0.0 20.2 31.7 ± 0.0 54.2
w/o short-term replay 96.0 ± 0.8 45.1 89.3 ± 13.6 68.6
w/o KF selection 96.8 ± 0.2 94.2 (3470) 93.0 ± 0.8 95.1 (4116)

BioSLAM [11] 94.9 ± 2.0 94.9 79.0 ± 22.5 93.8
MIR [39] 94.7 ± 0.8 95.4 86.1 ± 14.3 96.1
Reservior [27] 96.5 ± 0.4 94.9 (388) 94.0 ± 0.7 96.0 (224)

with ByteTrack, our method improves the tracking accuracy
by 45.2% on corridor1, 27.2% on corridor2, 27.7% on lab-
corridor, 36.6% on room and 5.0% on icvs compared to
Koide’s ReID method.

Above results indicate that our OCLReID can: i) utilize
stable tracking results from a feature-based tracking method
to learn a discriminative appearance model. This model fur-
ther assists the RPF system in re-identifying the target person
after occlusion; and ii) achieve better ReID performance
compared to existing baselines. This could be attributed to
its ability to leverage long-term experiences to construct a
more complete appearance model. This incrementally learned
appearance model captures more knowledge about the target
person, enabling successful ReID even in challenging RPF
scenarios.

C. Online Continual Learning Evaluation

1) Metric: The evaluation of OCL [9] aims to assess how
well the model remembers previous knowledge, which is
essential for person ReID in RPF, as previous knowledge
contain potentially matching experiences for future ReID.
Additionally, incrementally remembering previous knowl-
edge might result in a more generalized feature extractor.
Specifically, we treat the OCL evaluation for person ReID
as a classification task, where we assume that the true
identity of the target person is known in each frame, and the
model incrementally learns with known labels. For evaluation
purposes, we divide each sequence into eight segments,
each representing different levels of distribution drift. During



incremental learning, after each segment is learned, the
model is evaluated on previously seen segments. Similar to
[9], we use the ReID mean accuracy at the end of training
(r-mEAcc) as our OCL evaluation metric:

r-mEAcc =
1

8

8∑
j=0

a8,j (7)

where a8,j represents the average accuracy on the jth seg-
ment with the model having been learned from all eight
segments. Higher r-mEAcc values indicate that the model
retains more of the previous knowledge during incremental
learning.

2) Experimental Results: The results are shown in Table
II. The row of “w/o long-term replay” excludes the long-
term replay process from the framework while retaining the
classifiers for online learning and ReID. Compared to the
performance of original setup (Reservior), its r-mEAcc and t-
mAcc drop by 37.3% and 74.7%, respectively, on corridor2.
This underscores the importance of long-term replay for
incrementally memorizing long-term experiences and con-
structing a appearance model at a long-term scale. Moreover,
this long-term appearance model significantly improves the
person tracking ability, resulting in higher t-mAcc values for
all OCL methods that perform above 92.0% accuracy on both
sequences.

The row of “w/o short-term replay” removes the classifiers
but retains the feature extractor updating with long-term
experiences. It constructs a long-term buffer to store the
extracted features and re-identifies the target person using
the matching strategy with these features (similar to occluded
person ReID [17]). This experiment shows that although r-
mEAcc is high with 96.0% and 89.3% on corridor2 and
lab-corridor, respectively, t-mAcc is low with 45.1% and
68.6%.This result suggests the importance of learning a
classifier using short-term experiences. This could be at-
tributed to the fact that the feature extractor is incremen-
tally optimized using samples from different distributions.
Therefore, features in the long-term buffer are not strictly
in the same feature space. On the other hand, short-term
features extracted from short-term experiences exhibit local
consistency within the same feature space, which is essen-
tial for building a stable classifier. The evaluation of the
loss-guided keyframe (KF) selection strategy shows that,
Reservoir achieves similar r-mEAcc and t-mAcc compared
to “w/o KF selection”. However, it stores significantly fewer
samples in the long-term memory with 388 frames vs. 3470
on corridor2 and 224 frames vs. 4116 on lab-corridor. This
indicates that our loss-guided KF selection strategy can help
insert sparse and valuable samples to the memory without
compromising the ReID performance.

In summary, the above experiments demonstrate that long-
term replay can leverage long-term experiences to improve
the ReID ability of the RPF system. With these discrim-
inative features, short-term replay can thus learn a good
classifier for re-identifying the target person.

D. Discussion

As shown in Table I, the proposed OCLReID framework
achieves the best identification performance with an average
accuracy of 95.6%. Compared to Koide’s ReID method [5],
it exhibits superior ReID performance, which helps the RPF
system consistently track the target person even in case
of occlusion and similar appearance of distracting people.
These results indicate that our OCLReID framework can
incrementally learn from long-term experiences and help
build a more complete and discriminative appearance model.

Results of “w/o long-term replay” and “w/o short-term
replay” shown in Table II highlight the importance of the
combination of fast learning from short-term experiences and
slow consolidation from long-term experiences in our RPF
system. This dual-mechanism design draws inspiration from
the dual process theory mentioned in [40], which suggests
that a successful robot-environment interaction requires both
an intuitive system and a reasoning system. In our work,
the intuitive system is constructed by a clear classification
boundary optimized with short-term experiences. The reason-
ing system is built through incremental learning in an OCL
manner with long-term experiences, which incrementally
reasons about the discriminative information of the target
person.

From Table II, we observe that different OCL methods
perform differently in terms of r-mEAcc, with BioSLAM
achieving a performance of 79.0%, MIR 86.1%, and Reser-
voir 94.0%. While we do not design an OCL method in
this paper to specifically address the catastrophic forgetting
problem for RPF, it is a promising and practical direction
for better incrementally learning from long-term experiences
on a resource-limited robot. Additionally, we observe that
although the OCL ability of BioSLAM [11] is worse than
Reservoir [27] with r-mEAcc of 79.0% vs. 94.0% on lab-
corridor, its tracking accuracy only drops by 2.2%. This
indicates that not all historical knowledge needs to be memo-
rized for person ReID in some situations. However, we claim
that maximizing the enhancement of ReID ability at a long-
term scale is still necessary as it ensures a more complete
appearance model for dealing with complex ReID situations.

V. CONCLUSION
We approach person ReID in RPF as a problem of

online continual learning, enabling the RPF system to learn
incrementally from long-term experiences. As a result, the
framework achieves a complete and discriminative appear-
ance model, allowing for effective ReID even in challenging
scenarios, such as frequent appearance changes, occlusion,
and distracting people with similar appearances. Compared
to existing baselines, our OCLReID framework achieves
state-of-the-art performance in person ReID within RPF
scenarios.

Future directions for OCLReID involve the exploration
of methods to consolidate valuable samples, maximizing
the learning of appearance representations without forgetting
previous knowledge. Additionally, strategies to balance effi-
cient ReID and incremental memorization within crowded



environments will be investigated. These endeavors will
contribute to the enhancement of the robustness and efficacy
of the OCLReID framework in real-world applications.
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