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Abstract— Over the past decades, point cloud-based place
recognition has garnered significant attention. This research
paper presents a pioneering approach, denoted as the Multi-
scale Point Octree Encoding Network (MPOE-Net), designed to
acquire a discriminative global descriptor for efficient retrieval
of places. The key element of the MPOE-Net is the point octree
encoding module, which adeptly captures local information for
each point by considering its nearest and farthest neighbors.
Further enhancing local relationships, a multi-transformer
network is introduced, utilizing a novel grouped offset-attention
mechanism. To amalgamate the multi-scale attention maps into
a comprehensive global descriptor, a multi-NetVLAD layer
is incorporated. Through rigorous experimentation across di-
verse benchmark datasets, our proposed method unequivocally
outperforms existing techniques in the realm of point cloud-
based place recognition tasks, achieving state-of-the-art results.
Our code is released publicly at https://github.com/Zhilong-
Tang/MPOE-Net.

I. INTRODUCTION

Place recognition constitutes a fundamental cornerstone
in the domains of robot navigation, autonomous driving,
and augmented reality. This process involves matching a
given query scene, either in the form of an image or a
point cloud, against a comprehensive database to determine
the closest correspondences and subsequently establish the
query’s localization within the reference map. Notably, place
recognition bifurcates into two primary categories: point
cloud-based place recognition, as demonstrated by Point-
NetVLAD approach [1], and image-based place recogni-
tion [2]. Although numerous image-based place recognition
networks have been recently proposed, they are susceptible
to challenges associated with varying illumination, seasonal
changes, and the confined field of view of the camera. As a
viable alternative, LiDAR technology has garnered attention,
as it circumvents these limitations and capitalizes on its
capacity to provide precise 3D data, effectively enhancing
the accuracy of place recognition processes.

Numerous studies have emerged in recent decades con-
cerning point cloud place recognition. However, generating
a robust and distinctive global descriptor for a single query
remains a primary challenge. Inspired by PointNet [3] and
NetVLAD [4], Mikaela et al. [1] proposed PointNetVLAD, a
pioneering work for learning-based point cloud place recog-
nition. PointNetVLAD employs PointNet to extract local
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features from 3D point cloud data and then uses NetVLAD
as the global descriptor generator. PCAN was proposed by
Zhang et al. [5] in 2019. PCAN extracts local point features
by PointNet and produces an attention map that estimates
a weight for each point based on the contextual informa-
tion. Inspired by PointNet++, PCAN uses ball query search
based on different query radii to extract multi-scale features.
Nonetheless, Both methods use PointNet as a point local fea-
tures generator, which does not consider the local geometric
structure of the point cloud. Liu et al. [6] proposed a large-
scale place description network (LPD-Net). Instead of only
using the original point cloud coordinate, they extract local
features as the network input. They propose a graph-based
aggregation module in both feature space and Cartesian space
to further reveal the spatial distribution of local features
and inductively learn the structure information of the whole
point cloud. Self-attention and orientation encoding network
(SOE-Net) [7] was proposed by Xia et al. in 2021. They
use a novel point cloud orientation encoding module named
point orientation encoder (PointOE) to extract the point cloud
orientation feature. PointOE considers the spatial relationship
between eight different orientations for a single point. Le et
al. [8] proposed a pyramid point transformer network (PPT-
Net), which uses a pyramid transformer structure to extract
local features. Instead of using query ball, which PointNet++
proposed, they employ k-neighbor-nearest (KNN) as the
graph embedding encoder. This method uses KNN, which
does not consider the orientation information.

Previous research has underscored the significance of
local neighbor information in effective place recognition.
Drawing inspiration from PointSIFT [9], we propose a point
octree encoding module. Unlike prior approaches that solely
consider the nearest neighbor, our proposed module takes
both the nearest and the farthest neighbors into account,
effectively merging features from both. Additionally, a multi-
transformer module is presented to calculate the attention
map of the point cloud, enhancing the discriminative ca-
pabilities of the network. To enhance computational effi-
ciency while maintaining accuracy, a grouped offset-attention
module is devised. This module optimizes the computa-
tion process, resulting in improved overall accuracy. Lastly,
the attention maps obtained are integrated into the multi-
NetVLAD layer, enabling the generation of a discriminative
global descriptor, crucial for robust place recognition.

The contributions of this paper are as follows:
• We propose a new point cloud local descriptor extrac-

tion method that considers both the nearest and farthest
points within a particular radius in an octree. This



method makes use of more local information of each
point to generate a more significant local descriptor.

• We propose a multi-transformer layer that enhances the
local spatial relationship using a novel grouped offset-
attention module.

II. RELATED WORK

Point cloud based place recognition is converted to a
feature matching problem. The 3D descriptor has a signifi-
cant impact on performance. Various point cloud descriptor
extractors are proposed, which can be divided into two
categories: 3d local descriptor and 3d global descriptor.

A. 3D Local Descriptor

The goal of a 3D local descriptor is to provide a dis-
criminative and robust representation of a local neighborhood
in a 3D point cloud, allowing for efficient comparison and
matching between different neighborhoods. There have been
several approaches to 3D local descriptors in recent years,
including hand-crafted and deep learning-based descriptors.
Spin image [10] uses the idea of projecting the local surface
geometry of a point cloud onto a 2D plane and describing it
using a histogram. Geometry histogram [11] represents the
local geometry of a point cloud as a set of the histogram
which is based on regional shape context. Point feature his-
togram (PFH) [12] describes the local geometry information
of a point cloud by capturing the shape and geometry infor-
mation. Fast point feature histogram (FPFH) [13] is a fast and
efficient variant of PFH, which uses a more straightforward
and efficient method to compute the histograms. Nonetheless,
these methods based on the histogram need to be more robust
for large-scale place recognition due to sensitivity to noisy
and incomplete data acquired by sensors.

Recently, some learning-based 3d local descriptor extrac-
tion methods have been proposed. Inspired by convolutional
neural networks (CNNs), volumetric-based point cloud deep
learning feature extraction methods are proposed like 3D
SharpNets [14], volumetric CNN [15], OctNet[16] for 3D
object classification. 3DMatch [17], which jointly learns ge-
ometric feature presentation and associated metric functions
from real-world data. In addition, to represent the point cloud
as a voxel, multi-view projection is also an excellent method
to extract the point cloud feature. Multi-view convolutional
neural network (MVCNN) [18] projects point clouds into
different views and uses CNNs to extract features from every
view. PointNet [3] is a pioneering work for processing point
cloud point-wise. It takes the original point cloud data as
input and extracts features using CNNs. Based on PointNet,
point pair feature network (PPF-Net) is proposed by using
CNN to extract and match point pair features that describe
relative orientation and distance between two points in a
point cloud. The author of PPF-Net also proposes PPF-
FoldNet [19], which adds a folding operation to capture the
global context in the point clouds.

B. 3D Global Descriptor

The mainstream methods of 3d point cloud place recog-
nition generate a global discriminative scene descriptor.
Various global descriptor-generating algorithms have been
proposed, which can be divided into two categories: hand-
crafted and learning-based. [20] propose M2DP, a hand-
crafted method which generates the global descriptor by
projecting the 3d point cloud into different 2d planes and
generating a density signature for each plane. DELIGHT [21]
leverages intensity information to generate a novel descriptor
of LiDAR intensities. The descriptor encodes the distributed
histograms of the intensity of the surroundings, which are
compared using chi-squared tests. [22] propose a robust place
recognition algorithm that adopts Bearing Angle (BA) to
convert the 3D point cloud to images. Oriented fast and
rotated brief (ORB) features are extracted from the images
for scene matching. PointNetVLAD [1] is the first learning-
based 3D global descriptor-generating network for point
cloud place recognition. It utilizes PointNet to extract local
features from point cloud data and employs NetVLAD to
generate the global descriptor for the place recognition task.
Compared to PointNetVLAD, PCAN [5] adds a point con-
textual attention network to generate multi-scale contextual
information by ball query search. Large-scale place recog-
nition descriptor (LPD-Net) [6] utilizes original point cloud
data and local features extracted from the original point cloud
as the input. They propose a Graph-based Neighborhood
Aggregation to learn the spatial distributed relationship of
the scene. SOE-Net [7] extracts features by PointSIFT [9],
which encodes point cloud through 8 orientation information.
PPT-Net [8] proposes a pyramid point transformer module
to learn the local relationship adaptively. A pyramid VLAD
layer is designed to aggregate multi-scale feature maps into
a global descriptor.

III. METHOD

Fig. 1 shows the architecture of our neural network
MPOE-Net. Original point cloud will be used as the only
input, and four point octree encoding (PointOE) modules and
four offset-attention modules are designed to extract local
descriptors, which will be delivered to a multi NetVLAD
layer to generate a discriminative global descriptor.

Given a query point cloud as the input with coordinates
donated as Q = p1, · · · , pN ∈ RN×3, a PointOE module is
designed to extract local descriptors for each point. We also
design a multi-transformer layer to enhance the local neigh-
bor relationship. A multi-NetVLAD network is proposed
to take the feature maps generated from every transformer
module to produce a discriminative global descriptor by
utilizing multi-scale information.

A. Local Descriptor Extraction

Previous work [9] [7] about point orientation encoding
utilize the nearest neighbors of each point in eight direc-
tion, which can not accurately perceive the distribution of
neighborhood information. We propose a new point octree
encoding (PointOE) to utilize the nearest neighborhood and
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Fig. 1. Overview of our MPOE-Net architecture. Our network takes point cloud as input data. Four PointOE are employed to extractor local descriptors.
Four feature maps are feed into multi-NetVLAD layer to generate a discriminative global descriptor
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Fig. 2. Illustration of our PointOE module

farthest neighbors of each point to extract the local descriptor.
The nearest and farthest neighbors are defined as the nearest
and farthest distance of two points in Euclidean space. The
space can be divided into eight blocks, and it means eight
different directions for each point.

We also propose a multi-transformer module to enhance
the local spatial relationship. More specifically, we have
shown in Fig. 1 the multi-transformer module that we have
incorporated. At the end of PointOE, we added a transformer
module to enhance the spatial contextual relationships.

Consider a N × C matrix as the input of our PointOE
module, where N is the number of points, and C is the feature
dimension of each point. First, we employ a farthest point
sampling (FPS) to downsampling the input matrix and a new
feature matrix (N

′×C). Our module then adopt two stacked
8-neighborhood search (S8N): one for the nearest neighbors
(N

′×8×C) and another for the farthest points (N
′×8×C)

of the new feature matrix within a particular radius. As we
show in fig. 2, black points mean the nearest neighbor of
each directions, and the red points mean the farthest points

within a particular radius. A three-stage convolution is used
to extract features from the neighbors and the farthest points
where the convolutional kernel size is (1, 2) and the stride
is (1, 2):

Vx = g(Conv(Wx, V ))

Vxy = g(Conv(Wy, Vx))

Vxyz = g(Conv(Wz, Vxy))

After three-stage convolution, we obtain two feature maps
(N

′×C×1), and we concatenate these two new feature maps
into one new feature map (N

′×C×2). A new convolution is
applied to this new feature map and generates a new feature
map (N

′ × C × 1). Finally, we put this new feature map
into our grouped offset-attention network to learn the local
relationship between different regions. More details will be
introduced in the next section.

B. Grouped Offset Attention

The self-attention mechanism has demonstrated excellent
performance in the fields of speech and image processing.
However, its drawback lies in the high computational cost
required for its implementation. [8] proposes a grouped
self-attention module to reduce the computation of the
attention module. In addition, inspired by graph convolu-
tional networks [23], [24] designs an offset-attention network
to replace the original self-attention network. The offset-
attention network is designed to adaptively learn the local
spatial relationship between different point cloud regions. We
propose a novel grouped offset-attention network to generate
feature maps. Feature maps generated from the attention
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Fig. 3. Illustration of grouped offset-attention module

network will be delivered to the NetVLAD layer to produce a
global descriptor. Fig. 2 shows the architecture of our offset-
attention network.

Local features Fi ∈ Rm×C are extracted from i-th stage
PointOE module. Two group-wise 1×1 convolution networks
are applied to local features Fi to generate the query map
Q ∈ Rm×C and the key map K ∈ Rm×C . Another
1 × 1 convolution network is used to generate value map
V ∈ Rm×C . The query map and key map can be divided
into G groups along the channel side, donated by {Qg ∈
Rm×C/G|g = 1, · · · , G}, {Kg ∈ Rm×C/G|g = 1, · · · , G}.
In the g-th group, attention map Wg ∈ Rm×m can be
calculated as:

Wg = Qg ·KT
g

The final attention map W ∈ Rm×m can be calculated by
adding all G attention maps as follow:

W =
∑

Wg

Multiplying the value map V with the attention map W
followed by a softmax function, and can get the original
output of attention layer Fi+1 ∈ Rm×C which can be
formulated by:

Fi+1 = softmax(
W√
C
) · V

where C is the dimension of query map. Graph neural
networks [23] show the advantage of using a Laplacian
matrix L = D−E to replace the adjacency matrix E, where
D is a diagonal degree matrix. Inspired by it, We use an
offset-attention module to replace the self-attention module
where the final output can be calculated as:

Fi+1 = Conv(Fi+1 − Fi) + Fi

The final attention map will be sent to next stage encoder to
extract local descriptors.

C. Multi NetVLAD

Previous work [1] [5] [7] for point cloud place recognition
uses only a single NetVLAD module to generate a global
descriptor. These work does not make use of multi-scale
information. In our network, four grouped offset-attention
modules are designed to generate different scale feature

maps, which are crucial to producing a discriminative global
descriptor. We propose a multi-NetVLAD to utilize multi-
scale feature maps to generate the global descriptor. The
multi NetVLAD layer is shown in Fig. 1.

Our multi-NetVLAD layer utilizes four multi-scale feature
maps as the input. The feature map, which is generated
from the different receptive fields, has a different ability to
represent the local information of a single point. The low-
level features with smaller receptive fields may only work
partially, and the high-level features are used to combine
with low-level features to enhance the representation ability.
Inspired by [25], we use the point feature propagation
module to upsample the feature. The input feature maps can
be formulated as: F1, F2, F3 and F4, and the new feature
maps can be formulated as:

F
′

i = MLP (Fi ⊕ L(F
′

i+1))

where i ∈ {0, 1, 2, 3} and F
′

0, F
′

1, F
′

2 and F
′

3 are the new
feature maps. ⊕ means channel-wise concatenation and L
means the point feature propagation. We generate the multi-
scale global descriptors by NetVLAD [4] based on the new
feature maps. This layer can learn ki visual words for each
feature map which can be denoted as {dji ∈ RC | j =
1, · · · , ki}, and creates a (C ×Ki) dimensional vector ui =
[u1

i , · · · , u
ki
i ]. After this, we generate four global descriptors

at four resolutions. To obtain a more discriminative global
descriptor, we utilize the context gating mechanism. Finally,
the discriminative descriptor can be generated by the context
gating module.

IV. EXPERIMENTS

A. Benchmark Datasets

We utilize the benchmark datasets proposed by [1] to train
and evaluate our network. The benchmark datasets include
four different scenes: the Oxford RobotCar outdoor dataset
[26] and three in-door datasets of the university sector (U.S.),
residential area (R.A.), and business district (B.D.). These
datasets are created by a LiDAR sensor which is mounted on
a car that travels through four regions repeatedly at different
times, traversing a 10km, 10km, 8km, and 5km route. The
collected LiDAR data is used for a reference map which
can be used to construct a database of submaps. GPS/INS
readings are used to build the reference map with respect to
the UTM coordinate frame. The ground planes are removed
in submaps processing. The final point cloud is downsampled
to 4096 points. It is also rescaled and shifted to zero means
and inside the range of [−1, 1]. To generate a training tuple,
if the distance between two point clouds is less than 10m,
they will be regarded as positive and, if the distance is larger
than 50m, they will be regarded as negative. In the test case,
distance less than 25m will be regarded as a positive match.
We will provide a baseline version, and a refined version
result. We first train the baseline model only using the Oxford
RobotCar dataset. Then, we train the refined model by adding
the U.S. and R.A. datasets to improve the generalizability of
our network. Tab. II shows the details of baseline datasets and
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Fig. 4. Evaluation results (AR@ top N) of different methods trained on the baseline dataset

TABLE I
THE AVERAGE RECALL AT TOP 1 AND TOP 1% IN FOUR DATASETS FOR DIFFERENT METHODS FOR BASELINE MODEL

Oxford U.S. R.A. B.D.
AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1

PN VLAD 81.0 62.8 77.8 63.0 69.8 56.2 65.3 57.2
PCAN 83.8 69.1 79.1 62.5 71.2 57.0 66.8 58.1
LPD-Net 94.9 86.3 96.0 87.0 90.5 83.1 89.1 82.3
SOE-Net 96.4 89.4 93.2 82.5 91.5 82.9 88.5 83.3
MPOE-Net (OURS) 97.7 92.7 96.8 90.0 90.4 83.3 88.7 83.3

TABLE II
THE SPLIT OF TRAINING AND TEST DATASETS

Training Test
Baseline Refine Baseline Refine

Oxford 21711 21711 3030 3030
Indoor - 8442 4542 1766

refined datasets. We have 21711 Oxford submaps for baseline
training. 21711 Oxford submaps and 8442 indoor submaps
are prepared for refine training. To evaluate our baseline
model, we choose 3030 Oxford submaps and 4542 indoor
submaps. 3030 Oxford submaps and 1766 indoor submaps
are prepared for refine model test.

B. Implementation Details
We implement our network by the PyTorch framework,

and our network is trained on a single Nvidia RTX 3090
GPU with 24G memory. The number of points in an input
point cloud is 4096. We use a four-stage PointOE module
to extract the local descriptors. The number of points after
downsampling is 2048, 1024, 512, and 256. The radii of the
PointOE module are 0.1, 0.1, 0.25, and 0.5. The number of
groups in grouped offset-attention is 8. The output dimension
of multi-NetVLAD layer is 256. The initial learning rate is
0.0001, and it is halved every 5 epochs. We use Adam as the
optimizer and train the model for 30 epochs. The batch size
is 1, and we choose 2 positive clouds and 14 negative point
clouds to calculate the loss. We choose the hardest positive
and hardest negative quadruplet loss [7] as the loss function.

C. Baseline Network
We compare our baseline network with some excellent

methods, including PointNetVLAD [1], PCAN [5], LPD-

Net [6], SOE-Net [7]. These methods are all learning-based
methods. We use the same training datasets and test datasets.
We denote PointNetVLAD as PN VLAD. We use average
recall at top N and average recall at top 1% as the evaluation
metrics.

Tab. I shows the average recall@1% (AR@1%) and aver-
age recall@1 (AR@1) of different methods trained on the
baseline datasets and tested on different datasets. As we
can see, our MPOE-Net achieves the best result in most
test datasets. Our MPOE-Net achieves the best performance
at both top 1% and top 1 on Oxford, and U.S. datasets.
We also obtain good results at R.A. and B.D., where our
performance is exceeded only by LPD-Net, which relies on
ten handcrafted features. Fig. 4 shows the recall curves of
the top 25 retrieval results of PN VLAD, PCAN, LPD-Net,
SOE-Net, MPOE-Net at four test datasets. The results show
that our methods improve the performance at Oxford and
U.S. datasets, and our method also has good results in B.D.
and R.A. datasets. These results indicate that our network can
extract significant local features and generate discriminative
global descriptors.

D. Refine Network

In addition to train on the baseline dataset, we also train
our network on the refine dataset. We report the AR top 1 of
different methods on four datasets. As we can see in table III,
our method achieves better performance than other methods.
According to the performance of the baseline network and
refine network, we know our network can work well for point
cloud place recognition tasks. Compared to other methods,
our approach also exhibits superior generalization capability.



TABLE III
EVALUATION RESULTS OF DIFFERENT METHODS TRAINED ON REFINE

DATASET.

Oxford U.S. R.A. B.D.

PN VLAD 63.3 86.1 82.7 80.2
PCAN 70.9 84.3 82.9 80.2
SOE-Net 89.3 91.8 90.2 89.0
MPOE-Net (OURS) 93.2 97.6 95.4 90.9

TABLE IV
THE EAVLUATION RESULT OF DIFFERENT MODULE

AR@1% AR@1
N.P. 96.4 91.1
N.S.P 97.4 91.7
F.P 95.5 87.3
MPOE 97.7 92.7

(a) Multi-Transformer (b) Multi-NetVLAD

Fig. 5. The evaluation result of multi-transformer and multi-NetVLAD
module

V. DISCUSSION

A. Ablation Study

Ablation studies verify the availability of our proposed
modules, including the PointOE module, multi-transformer
module, grouped offset-attention module, and multi-VLAD
module. We evaluate our different modules on the Oxford
RobotCar dataset.

PointOE. In our PointOE module, we use the nearest and
farthest points to replace the nearest point. These experiments
are designed to validate the effectiveness of our PointOE.
MPOE in the table. IV means our proposed network with
the PointOE module. We use other local features to compare
with our method, such as the nearest point (N.P.) only, nearest
and secondary nearest points (N.S.P.), and the farthest point
(F.P.) only. We use AR@1% and AR@1 as the evaluation
metrics.

Compared with N.P., our PointOE module sees an im-
provement of 1.3% at AR@1% and 1.6% at AR@1. It means
our PointOE module proved to be an effective module in
improving performance. It is due to richer context informa-
tion of each point. Results in tab. IV shows our nearest and
farthest neighbors strategy works better than N.S.P. and F.P.
Farthest point does not work well independently.

Grouped offset-attention. To evaluate the effectiveness
of our grouped offset-attention module (MPOE), we design

TABLE V
THE EAVLUATION RESULT OF DIFFERENT MODULE

AR@1% AR@1
S.A 97.2 89.9
O.A 97.5 91.8
G.S.A 97.4 91.6
MPOE 97.7 92.7

TABLE VI
THE EAVLUATION RESULT OF DIFFERENT OUTPUT DIMENSIONS

AR@1% AR@1
D = 128 97.2 91.0
D = 256 97.7 92.7
D = 512 97.8 92.9

these experiments. We change our grouped offset-attention
module with self-attention module (S.A.), offset-attention
module (O.A.), and grouped self-attention module (G.S.A).
We use AR@1% and AR@1 as the evaluation metrics.

Compared to other attention methods, our grouped offset-
attention achieves the best performance. It seems that all
methods perform well at AR@1, but our method can achieve
better performance at AR@1.

Multi-transformer and Multi-NetVLAD. We reduce the
number of transformer modules and NetVLAD modules
to validate the effectiveness of our multi-transformer and
multi-NetVLAD module. We conduct the experiments on
the Oxford RobotCar dataset. We choose AR@25 to be the
evaluation metrics.

Fig. 5 shows the evaluation results. With the increment
of the number of transformer modules, the AR@1 increases.
This is due to the local spatial relationship being enhanced by
our transformer module. The more the transformer modules,
the better the result. Fig. 5(b) shows AR@25 with the change
of the number of NetVLAD modules. When we use four
NetVLAD layers, we obtain the best result. It is because
we use the richest multi-scale feature maps to generate the
discriminative global descriptor.

B. Output Dimension Analysis

In this section, we evaluate the performance of the global
descriptor with different dimensions. We use AR@1% and
AR@1 to evaluate our method. All the experiments are
conducted on the Oxford RobotCar dataset. We try the
dimensions at 128, 256, and 512.

Tab. V shows the result. When the output dimension
decrease from 256 to 128, AR@1 declines by 1.7%. When
we increase the output dimension from 256 to 512, AR@1
only increases by 0.2%, and AR@1% only increases by
0.1%. This validates the robustness of our method against
different output dimensions.

VI. CONCLUSIONS

We propose a novel multi-transformer, multi-NetVLAD
network with a point octree encoding module in this paper.
Compared to the original PointSIFT module, we utilize more
local information around a point to extract more significant



local descriptors. A multi-transformer module is designed
to enhance the local relationship between different regions
using a grouped offset-attention module. The grouped offset-
attention module can simplfy the network and improve the
performance of our network. Finally, we design a multi-
NetVLAD layer to generate a discriminative global descrip-
tor by using multi-scale feature maps. Extensive experiments
on the test datasets show that our network can achieve the
state-of-the-art in the point cloud based place recognition
task.
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