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Abstract— As the basics of Visual Simultaneous Localization
And Mapping (VSLAM), keyframes play an essential role. In
previous works, keyframes are selected according to a series
of view change-based strategies for short-term data association
(STDA). However, the texture enrichment of frames is always
ignored, resulting in the failure of long-term data association
(LTDA). In this paper, we propose an information enrichment
selection strategy with an information occupancy grid model
and a deep descriptor. Frame is expressed by a deep global
descriptor for a statistical explainable abstraction, in which
the texture enrichment is indicated. Based on the abstraction,
an information occupancy grid model is established to measure
the information enrichment and the potential LTDA ability.
Evaluations on variant datasets are conducted, showing the ad-
vantage of our proposed method in terms of keyframe selection
and tracking precision. Also, the statistical explainability of the
deep descriptor is provided. The proposed keyframe selection
strategy can improve LTDA and tracking precision, especially
in situations with repeated observations and loop-closures.

VSLAM, Keyframe Selection, Occupancy Grid Model

I. INTRODUCTION

In the past ten years, VSLAM has been studied densely
[1] [2], which plays an essential role in visual navigation [3]
and self-driving [4]. Especially with the development of com-
puter vision, VSLAM has become a popular research topic.
Among the existing popular VSLAM studies, for example,
the indirect method-based systems [5], the direct method-
based systems [6], as well as the semi-direct method-based
systems [7], most of them are built based on keyframes.
Keyframes are the frames selected from a continuous frame
sequence. As introduced in [8] [9], several standard steps
are included in a keyframe-based VSLAM system, such
as keyframe selection, pair-wise tracking (STDA), spatial
projection, place recognition (LTDA), and graph optimiza-
tion. In all the processes, the keyframe selection plays an
essential role in providing reference markers. A visual map is
updated after inserting a new keyframe, and the built map can
satisfy STDA. Besides providing landmarks for STDA, as the
popularity of submap-based VSLAM [10] [11] and lifelong
VSLAM [12] in recent years, the role of keyframes in terms
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Fig. 1. In VSLAM, the existing keyframe selection strategies are designed
to satisfy short-term data association only, shown as the blue arrows.
However, long-term data association is ignored, which results in the missing
of loop-end keyframes (red arrow) and the failure of loop-closure detection.
In our work, the information enrichment of frames is measured to enhance
long-term data association.

of LTDA is gaining focus. Regarding LTDA in VSLAM, it
helps in loop-closure detection and submap alignment for the
global consistency (Fig. 1).

Due to the importance of keyframes, the strategy of
keyframe selection is widely studied. In an indirect method-
based VSLAM system [5], the strategy in terms of feature
correspondence is proposed for local tracking. As for the
direct method-based systems [6], the insertion of keyframe
is decided by a weighted sum from pair-wise optical-flow
tracking. In the study of keyframe selection comparison [13],
lots of related methods have been analyzed, and different
types of similarity metrics are introduced.

As is mentioned above, most of the metrics are designed
to satisfy the requirement of STDA, while LTDA is always
ignored. In an attempt to fill this gap, we propose to enhance
LTDA by selecting texture-rich keyframes, which has better
LTDA ability than the texture-less one. The texture enrich-
ment is measured by information in this paper. To calculate
the information enrichment, we introduce an information
occupancy grid model based on a statistical explainable
descriptor. The information-rich frame is defined as the one
that increases the total occupancy probability much.



This paper is organized as follows. Section II presents the
related work and the motivation of this study. Section III
details the proposed keyframe selection strategy. Section IV
shows the experimental results and the discussion. Finally,
section V concludes this paper.

The contribution of our study is threefold:
1. We propose to enhance long-term data association by
selecting texture-rich keyframes;
2. To measure the texture enrichment, an information occu-
pancy grid model and a statistical explainable deep descriptor
are introduced;
3. In situations with repeated observation and loop-closure,
the proposed strategy shows advanced precision.

II. RELATED WORK

Our work intersects keyframe selection, deep global de-
scriptor, and information consideration in visual navigation.
To clarify the motivation of this study, we provide a survey
of related studies in this section and discuss the shortcomings
of existing works.

A. Keyframe Selection in VSLAM

As the basis of VSLAM systems, keyframes enable visual
tracking and loop-closure detection. Also, with the devel-
opment of submap-based and lifelong VSLAM systems,
keyframe selection determines the global consistency be-
tween submaps. Therefore, many researchers have investi-
gated this problem.

Based on the estimated camera motion with respect to the
existing map, LSD-SLAM [14] and SVO [7] make keyframe
decisions by transformation estimation. A similar metric is
also leveraged in Code-SLAM [15] and RGBDSLAM [16].
The keyframe selection based on feature correspondence is
also widely studied. In feature-based VSLAM systems [5]
and submap-based VSLAM [11], the feature correspondence
is established by local descriptor matching. To select good
keyframes, [17] proposes to insert keyframes with a strong
feature temporal disparity. To improve the quality and con-
sistency of feature matching, in [18], a selection method
maximizing the number of feature correspondence by storing
observation data is proposed. Considering a combination of
the mentioned strategy, DSO [6], LDSO [19] and DSM [20]
use a weighted sum of camera motion, optical-flow matching,
and illumination change as the selection judgment.

Regarding all the mentioned strategies above, they use
one or more indicators to measure the view change of
camera observation with respect to the existing map [9].
Because visual tracking is achieved by the overlap between
frames, a new keyframe is needed to update the visual
map when the view change is too significant to provide
enough overlap. However, due to the non-sequential data
association of loop-closure detection and submap alignment,
the keyframe should also provide rich information for LTDA
instead of the overlap for visual tracking only. In this paper,
we propose a selection strategy considering information
enrichment, and LTDA can be improved by the selected
texture-rich keyframes.

B. Image Global Descriptor

In terms of image global descriptors, two types of global
descriptors have been proposed. The first type is the hand-
craft descriptor, which is extracted by a series of rules and
designed filters. One of the classical hand-craft descriptors is
the VLAD [21], which generates a low-dimensional global
descriptor through a cluster-like aggregating method. An-
other type of hand-craft descriptor is the VBoW (Visual
Bag of Word) class [22] [23]. These methods classify local
feature descriptors into a pre-trained dictionary, and a frame
is expressed by the counting scope of the dictionary words.
GIST is also a popular global image descriptor [24], which
uses a filter bank [25] to extract the image pixel response
to different types of texture patterns. All the hand-craft
descriptors are based on human experience and the raw
image texture. Due to the lack of high-level knowledge, the
hand-craft descriptors show the shortcoming on the variance
of illumination and perspectives [26].

To solve the problem of hand-craft descriptors, learning-
based deep descriptors are proposed. According to the back-
bone of network architecture, the exiting works are classified
into two types: the pre-trained classification network type
[27] and the end-to-end training model type [28] [29]. Both
two types of descriptors are based on CNNs. As mentioned
in [30], CNN-based deep descriptors can be regarded as the
response to a series of texture patterns, which is similar to
the GIST descriptors. However, due to the multiple layers
perception in neural networks, both the low-level and high-
level knowledge is represented in a learning-based deep
descriptor. Therefore, the extracted deep descriptor indicates
a more appropriate abstraction of a frame than the hand-craft
descriptor.

Taking the superiority of deep descriptors, we proposed to
calculate the information enrichment on top of it.

C. Information Consideration in Visual Navigation

As for the information consideration in visual navigation,
there are two popularly studied applications: autonomous
exploration and observation completion evaluation.

In the application of autonomous exploration, robots find
the next best view to obtain as much information as possible.
Therefore, the observation information with respect to an
existing map is leveraged as the indicator in [31]. Also,
to achieve autonomous visual mapping and ensure texture
enrichment for visual tracking, some active VSLAM systems
are proposed [32]. In these studies, entropy is always defined
as the information introduced from the current observation.
The next best view is found by minimizing the entropy.

As for the evaluation of visual observation completion,
to our knowledge, the most related work is [33]. In this
work, the information enrichment is leveraged to judge the
completion of multiple camera observations and decide the
update of a visual map. However, this study focuses on the
multiple camera system for object reconstruction. Inspired
by the mentioned work above, we propose to determine the
keyframe selection using a novel information occupancy grid
model and the statistical explainability of the deep descriptor.



III. METHODOLOGY

We propose to enhance LTDA by selecting keyframes
with rich texture, which is measured by the information
enrichment in this paper. For the efficient calculation, we
introduce a low-dimension projection method using the deep
descriptor, in which the texture enrichment is indicated.
Based on the statistical explainability of the deep descriptor,
a novel information occupancy grid model is proposed to
calculate the information enrichment in a form of occupancy
probability. Lastly, a keyframe selection strategy considering
both the information enrichment and the view change is
proposed. The framework is shown in Fig. 2.

A. Deep Descriptor Extraction

To efficiently calculate the information enrichment of a
frame, a low-dimension projection is needed. Due to the
superiority of deep descriptors over hand-craft descriptors
[26], we utilize a deep global descriptor for low-dimension
projection. The network architecture for the deep descriptor
extraction is shown in Fig. 3. Firstly, a feature map is
extracted from a high-level layer of a pre-trained CNN. The
feature map is then normalized by a layer normalization [34]
and fed into a convolutional autoencoder (CAE). CAE is a
convolutional-based aggregating method. Our CAE consists
of three encoder layers and three decoder layers. Each
layer in the encoder/decoder is composed of a convolu-
tional/deconvolutional filter, a batch normalization [35] and a
parametric rectified linear unit [36]. With the sliding window
procedure of convolutional filters, the spatial information
of different level features can be kept and represented. In
the training procedure, the CAE is trained by reconstructing
the normalized feature map using a MSE (mean squared
error) loss. However, the decoder is dropped in the inference
step, and only the encoder is kept to produce the encoded
descriptor. Lastly, the encoded descriptor is flattened and L2
normalized to get the deep descriptor.

We choose an illumination-invariant feature maps as the
output, which are found in previous works. Similar to [29],
we choose the pre-trained VGG16 [37] as our backbone.
Given a frame ft at time t, the network output descriptor Ft

is computed as:
Ft = Nθ(ft) (1)

where Nθ is the network. Specifically, Ft is from the last
layer of CNNs. Then, Ft is normalized and fed into a CAE
for the final deep descriptor Mt = [dt1 ... d

t
i ... d

t
dim(Mt)

].

B. Information Occupancy Grid Model

Information enrichment of a frame is calculated on top of
the deep descriptor. To analyze the frame abstraction Mt, we
draw the learned filters in Fig. 4 using the method in [38]. As
is shown, the learned filters represent a series of basic texture
patterns, such as line, circle, rectangle, corner. Therefore, the
output descriptor is the count of responses to the patterns.
When a large number of the corresponding pattern is detected
in a frame, the response value is significant. Therefore, the
value in each descriptor dimension indicates the enrichment

of certain types of texture patterns; the number of non-zero
descriptor dimensions indicates the enrichment of texture
pattern diversity. The data distribution of the deep descriptor
indicates the texture enrichment. Based on the statistical
explainability of Mt, an information occupancy grid model
is proposed to calculate the information enrichment.

The occupancy grid model is a common method for the
enrichment calculation. In the proposed information occu-
pancy grid model, each grid is defined by a dimension of
the deep descriptor. The occupancy probability Pi of grid
i is given by dti, which indicates the enrichment of variant
patterns. Obviously, an information-rich frame is the one that
increases the total occupancy probability much with respect
to the existing model, which is indicated by the change of
entropy in our method.

The occupancy probability Pi,St is calculated with St,
where St is a subset of all the existing keyframes Sall.
Firstly, we calculate the total dimension value Di,St for each
dimension of the deep descriptor. Since the deep descriptor
is normalized before, Di,St is the sum of the corresponding
dki of each frame fk ∈ St, as shown in Formula 2. In
addition, we limit Di,St to a given threshold TD, making
Di,St satisfy the occupancy grid model and balances the
weight between each dimensions. Then, Pi,St is calculated
in a form of logarithmical probability (Formula 3).

Di,St = min{TD,
∑

fk∈St

dki } (2)

Pi,St = log
Di,St

1−Di,St

(3)

Lastly, the Shannon Entropy Hi,St of grid i is calculated as
shown in Formula 4:

Hi,St = −Pi,St · logPi,St (4)

After obtaining Hi,St , the total entropy of St, written as
Einfo(St), is calculated as shown in Formula 5:

Einfo(St) =
∑

i<dim(Mt)

Hi,St (5)

The information enrichment Gt of ft at time t is the
change of Einfo(∗) introduced by ft. Because the input
of VSLAM is sequential, we pick the existing keyframes
within the last n seconds as St. Therefore, Gt is defined
with respect to the neighbor of ft. The calculation of Gt is
shown in Formula 6, where e ⊕ B represents inserting an
element e into a set B.

Gt = Einfo(ft ⊕ St)− Einfo(St) (6)

C. Keyframe Selection Strategy

We introduce the keyframe selection strategy based on the
information occupancy grid model in this section. Due to
the variance of perception, each frame can contribute to the
information enrichment. However, the keyframe redundancy
is not considered strictly, which influences the real-time
performance. To balance the requirement of information en-
richment and redundancy, we consider both the information



Fig. 2. The framework of our proposed method. Both the current frame and the existing keyframes are expressed by a deep descriptor abstraction (shown
as the histograms). The information enrichment of the current frame with respect to the existing keyframes is calculated in the information occupancy grid
model. After that, a keyframe selection strategy considering both the information enrichment and the view change is designed for enhancing LTDA.

Fig. 3. The architecture of our deep descriptor network.

Fig. 4. Learned filters of the deep descriptor network, which represent a
series of texture patterns.

enrichment and the view change in our strategy. Referred to
the existing work [9], the keyframe redundancy is always
indicated by the view change Vt. Vt represents the diversity
between the current frame and the existing map. With the
calculated Vt in the VSLAM, the proposed selection strategy
is shown in Algorithm 1.

Firstly, before the extraction of Mt, we remove the frames
with motion blurry [39] due to the fake information intro-
duced by blurry pixels. Then, the information enrichment Gt
is calculated. To combine the view change and the informa-
tion enrichment, we tune the threshold on view change φV by
Gt. Since φV has been given in most of the existing VSLAM
systems, the strategy on top of φV makes our algorithm
general. Then, the average information enrichment G learned
from an offline test is involved to judge the information-poor
frames. Finally, the decision is made by comparing Vt with
the tuned threshold (φV +(Gt−G) ·w). The requirement of
diversity is released when the frame information is rich; and
the frame redundancy is also considered to limit the number
of selected keyframes.

Algorithm 1 Keyframe Selection Strategy
Require: Newly captured frame, ft;

All the existing keyframes, Sall;
Given threshold on view change, φV ;
Given weight for judgment combination, w;
Average information enrichment, G;

1: Check the Motion blurry of ft;
2: Extract the deep descriptor Mt from ft;
3: Get neighbor keyframe subset St from Sall;
4: Extract the deep descriptor of each frame in St;
5: Calculate Gt between ft and St;
6: Calculate view change Vt of ft with respect to Sall;
7: return Vt > φV + (Gt −G) · w;

IV. EXPERIMENTS

To verify the performance of our proposed keyframe se-
lection strategy, based on a state-of-the-art VSLAM system,
we conduct experiments on different datasets. Firstly, we
introduce the setup of experiments. Secondly, the effective-
ness of the deep descriptor and its statistical explainability is
demonstrated. Then, we show the feasibility of the proposed
information occupancy grid model. Lastly, a comparison with
other existing keyframe selection strategies is provided to
show the superiority of our proposed strategy.

A. Implementation

In the training procedure of the deep descriptor network,
we use part of Oxford RobotCar [40], TUM dataset for the
CAE training. Within these datasets, challenging appearance-
change views are captured.

As for the keyframe selection strategy, we implement
the proposed method based on ORB-SLAM3. ORB-SLAM3
is an indirect method-based system in which the camera
view change is measured by the number of feature match-
ing. Also, ORB-SLAM3 is a submap-based system whose
tracking precision can be highly affected by LTDA. In this



modification, the information enrichment term is added in
the “c4” condition threshold (a given threshold in terms of
matched features) in the code. As for the given parameters,
the probability threshold TD = 0.8, the combination weight
w = 45.0, the average information enrichment G = 6.0, and
the size of slide-window n = 30.

B. Experiments Setup

In evaluations of the deep descriptor, we draw the learned
filters for visualizing the frame abstraction procedure. As for
the verification metric of frame abstraction, we follow the
common evaluation metric introduced in [29]. The long-term
dataset: Oxford RobotCar, excluding the training images,
is used for evaluation. Then, the data distribution of the
deep descriptor extracted from frame examples is provided,
showing the statistical explainability of the deep descriptor.

To verify the proposed information occupancy grid model,
we provide the curve of information enrichment with a
sequential frame input. Both the change of information en-
richment and its relationship to the frame are shown. Finally,
we list the results of the proposed strategy and the existing
strategy on different datasets to demonstrate our advantage.
The precision of visual tracking is indicated by the root
mean square of absolute trajectory error (RMSE), and the
size of selected keyframes is also recorded. In terms of the
conducted datasets for VSLAM validations, two datasets are
conducted: TUM [41] (exclude the training sequences) and
EuRoC [42]. The datasets are recorded by a handheld sensor
and a camera mounted on a UAV in indoor environments.
The ground truth is provided by a motion capture system. To
show the influence of LTDA, we select the sequences with
repeated observation and loop-closure for the evaluation of
long-term data association.

As for the computer configuration, we run all the evalu-
ations on a desktop computer with an Intel Core i9 (2.80
GHz) CPU, Nvidia 3090 GPU and 128GB memory.

C. Experimental Results

1) Evaluations of Deep Descriptor and Statistical Ex-
plainability: In the comparison of frame abstraction (Tab.
I), our output dimension is set to 4096. We can observe that
compared to the SoTA: NetVLAD and VGG16, our deep
descriptor achieves the best results with higher AP. Even in
an appearance-change dataset, such as RobotCar (dbNight
vs. qSnow), our recall@1 is 0.758 versus NetVLAD’s 0.642,
VGG16’s 0.523 and AlexNet’s 0.660. As for the extraction of
deep descriptors, we provide examples of the frames with or
without repeated texture and their corresponding descriptors.
As shown in Fig. 5, compared with the original frame, the
deep descriptor extracted from repeated texture frame has a
smaller number of peaks and the distribution of peaks are
more centralized. In addition, as the patch size decreases
(the size order is: b-c-d-e-f), the number of peaks is less
and the peaks are more centralized. Such results support the
discussion mentioned in Sec. III-B, that the data distribution
of the deep descriptor indicates the texture enrichment.

Method AP R@1 R@5 R@10 R@20

Ours 0.948 0.758 0.832 0.862 0.895
NetVLAD 0.853 0.642 0.765 0.814 0.864

VGG 0.745 0.530 0.652 0.706 0.765
AlexNet 0.902 0.660 0.761 0.800 0.840

TABLE I
THE COMPARISONS OF PLACE RECOGNITION PERFORMANCE BETWEEN

OURS AND OTHER EXISTING WORK ON ROBOTCAR. OUR DEEP

DESCRIPTOR ACHIEVES THE BEST RESULTS.

2) Evaluations of Information Occupancy Grid Model:
We show the entropy calculated from the information oc-
cupancy grid model. With the repeated observation of a
particular room, the entropy is shown in Fig. 6. The entropy
increases at the beginning and converges to 0 after a certain
duration of frame capturing. Meanwhile, as the converging
of the entropy, the environment modeling is also completed.
Such a result shows the astringency of the information
occupancy grid model.

Also, to show the proposed strategy intuitively, the in-
fluence of frame texture is provided. The experiment is
conducted on frei1 room. The relationship between the infor-
mation enrichment and the number of non-zero dimensions
(written as nd), and the newly introduced nd from a frame,
is shown in Fig. 7. As is shown (texture-less frame: 2, 3, 5,
and texture-rich frame: 1, 4 ), with the increment of nd and
∆nd, more information is obtained. It is because the diverse
texture pattern response indicates information enrichment.
Also, little information enrichment is calculated when the
corresponding frame is texture-less. The information-rich
frame is supposed to enhance LTDA.

3) Evaluations of Keyframe Selection Strategy in VSLAM:
To evaluate the proposed keyframe selection strategy, we
implement our strategy based on a popular VSLAM system
and show the tracking performance in Tab. II, including
the tracking precision, the tracking time consumption and
the size of the keyframe set. Compared with the exist-
ing keyframe selection strategy used in ORB-SLAM3 and
LDSO, the advantage of our strategy over the second best
one is shown. The time consumption of deep descriptor
extraction is 0.012s per frame, which is not included in
the table. The degree of repeated observation (repeated in
the table) is the ratio between the trajectory coverage area
and the trajectory length. The results in the table indicate
the superiority of the proposed strategy with lower tracking
error, where the improved precision by ours is shown in the
“Advance” column.

As shown in Tab. II, our advantage in terms of RMSE
is obvious when the repeated observation is significant.
It is because more LTDA can be established when the
number of repeated observations is larger. This result verifies
the enhancement of LTDA by our method. To show the
relationship between our advance and the degree of repeated
observation, we plot the curve in Fig. 8. Because of the
different environments among sequences, we plot the results



(a) (b) (c)

(d) (e) (f)

Fig. 5. Six groups of frames with/without repeated texture and the corresponding deep descriptor. The repeated texture frames (figure b, c, d, e and f)
are generated from a part of the original frame (figure a). The results with variant patch size are provided to show the multi-scale perception in the deep
descriptor. Compared with the original frame’s descriptor, the deep descriptors extracted from the repeated texture frames have fewer peaks, and the peaks
are also more centralized. Such a result shows the statistical explainabily for occupancy grid model establishment.

Sequence Proposed Selection Strategy Selection Strategy in ORB-SLAM3 Selection Strategy in LDSO

Name Repeated Advance Time Keyframe RMSE Time Keyframe RMSE Time Keyframe RMSE

V1 01 ++ 0.007 0.028 228 0.086 0.030 182 0.093 0.021 704 0.098
V1 02 +++ 0.011 0.029 233 0.051 0.029 190 0.062 0.020 741 1.527
V1 03 +++ 0.043 0.028 307 0.063 0.027 286 0.106 0.020 1103 0.367
V2 01 + 0.000 0.029 254 0.060 0.029 183 0.060 0.019 432 0.073
V2 02 ++ 0.016 0.029 291 0.056 0.028 212 0.072 0.022 889 0.107
V2 03 +++ 0.307 0.028 357 0.160 0.028 268 0.467 - - -
MH 01 ++ 0.004 0.031 381 0.046 0.031 256 0.050 0.021 708 0.052
MH 02 ++ 0.007 0.030 286 0.053 0.029 245 0.060 0.019 840 0.064
MH 03 +++ 0.008 0.029 255 0.044 0.027 200 0.052 0.020 758 0.070
MH 04 + 0.001 0.030 290 0.084 0.030 212 0.085 0.020 468 0.086
MH 05 + 0.001 0.029 308 0.057 0.029 224 0.058 0.021 565 0.098

frei2 p360 + -0.003 0.019 147 0.133 0.019 136 0.130 0.016 335 1.694
frei2 slam ++ 0.007 0.019 101 0.117 0.018 76 0.124 0.015 1244 1.973
frei2 slam2 + 0.000 0.018 76 0.030 0.018 63 0.030 - - -
frei2 slam3 + 0.005 0.018 109 0.098 0.018 125 0.103 - - -

TABLE II
COMPARISONS BETWEEN THE PROPOSED STRATEGY AND THE STRATEGY IN ORB-SLAM3 AND LDSO. THE TIME CONSUMPTION OF PER FRAME (S),

THE NUMBER OF KEYFRAME AND THE PRECISION INDICATED BY RMSE (M) ARE SHOWN. ALL THE RESULTS ARE THE AVERAGE OF 5 TESTS.

(five tests) on EuRoC V1 and EuRoC V2 separately. Since
the difficulty of visual tracking on V1 03 and V2 03 is
serious, the corresponding results have a large variance.

D. Discussion

As shown in Tab. I, the proposed deep descriptor achieves
advanced performance in the aspect of place recognition.
Compared to the baseline, the AP of our deep global de-
scriptor is improved by 10.5% on average. Such a result
indicates an appropriate frame abstraction. Also, the strong
place recognition ability enhance LTDA in VSLAM. Besides,
the statistical explainability of the deep descriptor is demon-
strated in Fig. 5. The deep descriptor from a repeated feature
frame has a smaller number of peaks than the original frame,
and the peaks are also more concentrated. Such a result can

be explained by the deep descriptor extraction, which is the
response to different texture patterns. Because the repeated
texture frame responds heavily to one of the patterns and has
little response to the non-existed patterns, the distribution of
non-zero values is within a small range of dimensions. Also,
the deep descriptor from the small patch repeated frame has
fewer peaks than the one with a big patch because the former
has more repeated patterns, and the pattern diversity is less.
Such results also verify that the network has a multi-scale
perception ability. According to the experimental results, we
can conclude that the value in each dimension indicates the
enrichment of certain texture patterns, and the number of
non-zero dimensions indicates the texture pattern diversity.
Therefore, the deep descriptor is able to indicate the texture
enrichment of a frame.



Fig. 6. Curve of entropy, as well as the environment modeling results at
the corresponding moments. The experiment is conducted on V1 02.

Fig. 7. Curve of information enrichment and the non-zero dimension in
the deep descriptor. The top row is the information enrichment (red) and
the number of non-zero dimension (green); the mid row is the information
enrichment (red) and the increased number of non-zero dimension (blue)
from a frame; and the down row is the corresponding frames during the
experiment (texture-less frame: 2, 3, 5, and texture-rich frame: 1, 4 ).

In the aspect of the proposed information occupancy grid
model, we verify its feasibility by analyzing the calculated
information enrichment. To show the information enrichment
indication, we draw the curve of information enrichment with
repeated observation. As is shown in Fig. 6, the calculated
entropy convergences after a period of observation of a
room, which means that the information enrichment from the
information occupancy grid model can judge the completion
of observation. In addition, we analyze the relationship
between the information enrichment and the frame texture,
which is shown in Fig. 7. With the increment of nd, more
information is obtained because of the diverse texture pattern
in a frame. Also, as the increment of ∆nd, the higher
information enrichment is achieved due to the new texture
pattern response. Such a result shows that our proposed
information occupancy grid model is able to measure the
information enrichment of frames.

With the information enrichment calculated from the
information occupancy grid model, we compare different
types of keyframe selection strategies. As shown in Tab.
II, our strategy achieves higher precision over the existing
keyframe selection strategy, which indicates a better global
consistency in a submap-based VSLAM system. Due to the
consideration of information enrichment in our keyframe

(a) Results on EuRoC V1 sequences

(b) Results on EuRoC V2 sequences

Fig. 8. Plots of our advanced precision and the degree of repeated
observation. The improved precision by our strategy is positive relative to
the degree of repeated observation. Due to the fact that LTDA is significant
in the situations with repeated observation, such a result verifies that the
proposed strategy enhances LTDA for precision.

selection, the selected keyframes facilitate loop-closure de-
tection and submap alignment. Therefore, the higher pre-
cision is achieved in the VSLAM performance. Moreover,
our advance in terms of RMSE is larger when the repeated
observation is more significant, as is shown in Fig. 8. Since
more LTDA can be established when the degree of repeated
observations is larger, this result verifies the enhancement of
LTDA by the proposed strategy.

V. CONCLUSION

In this paper, we propose to enhance long-term data
association by selecting texture-rich keyframes. To measure
the texture enrichment, a selection strategy with a novel
information occupancy grid model and a statistical explain-
able deep descriptor is introduced. The experiment results
demonstrate the statistical explainability of the deep descrip-
tor and the superiority of the proposed keyframe selection
strategy. Compared to the existing work in terms of tracking
precision, our superiority is significant in situations with
repeated observation, showing the enhancement of LTDA
introduced by our keyframe selection strategy. In the feature,
we plan to build a cloud-edge VSLAM system offloading the
feature extraction in the cloud for robot navigation.
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